

COMPUTER ENGINEERING
Distributed Systems and Middleware Technologies

PROJECT DOCUMENTATION

Design and development of “GameOn”:
a Distributed Application using Java EE and Erlang

Students
Federica Baldi

Francesco Campilongo
Daniele Cioffo

Academic Year 2020/2021

GameOn | Federica Baldi, Francesco Campilongo, Daniele Cioffo 1

1 APPLICATION REQUIREMENTS

1.1 FUNCTIONAL REQUIREMENTS AND USE CASES
GameOn is a web application that hosts a variety of multiplayer browser games. At the

moment, featured games are Connect Four and Tic-Tac-Toe, but the list may be updated in

the future.

In this application there is only one actor, the user. All features included in the application

are intended to provide services for the user.

To access the application, users are required to register and login using a username and

password. Once logged in, users can select the game they want to play from the list of

featured ones.

After selecting a game, users enter the game’s lobby, from which they can view a list of online

users and a rank based on the number of wins.

Users can either choose their opponent from the list of online users or wait to be challenged.

Users can also decide to change game, by returning to the list of games and selecting another

one.

When users receive a game request, they can decide whether to accept or reject it. If a user

accepts the request, the game begins on both sides.

During the game, users are given a limited amount of time to make their move, after which

the turn will automatically pass to their opponent.

After a set number of lost rounds, users are considered offline and the game is won by their

opponent. Moreover, if one of the two users disconnects, the game started is automatically

won by the other user.

While playing, users can also chat with each other and send text messages commenting on

their moves.

At the end of a match, users are automatically redirected to the lobby of the game, so they

can start a new one.

1.2 NON-FUNCTIONAL REQUIREMENTS
In this subsection the non-functional requirements of the web application are considered,

some of these had been defined by the professor.

1.2.1 Flexibility

As we want to leave the possibility to add new games over time, it is important to use a

flexible model for our data.

GameOn | Federica Baldi, Francesco Campilongo, Daniele Cioffo 2

1.2.2 Availability

For an application that hosts several users playing at the same time it is necessary to have a

distributed structure that guarantees high availability.

1.2.3 Speed and Usability

The application must have very short response times and must be simple to use, for users

to enjoy it.

1.2.4 Using Erlang

This requirement is part of those defined by the professor, it is necessary to develop at

least one application module in Erlang.

1.2.5 Management of synchronizations, communications, coordination

This requirement is also part of those defined by the professor, the purpose of this project

is to learn how to manage the synchronization, communication and coordination of

processes in a distributed environment. A separate section will be dedicated for discussing

these aspects.

2 STRUCTURE

GameOn is programmed using a client-server modeled structure: users are provided the use

of the application through their web browsers (clients), which are responsible for

communicating with the web server.

The application is organized into the classical three-tier architecture, as shown in Figure 1.

Presentation tier. The presentation tier is the front-end layer and consists of the user

interface. It is built with HTML5, cascading style sheets (CSS), and JavaScript, and it is

deployed through a web browser.

Logic tier. The logic tier contains all the business logic that supports the application’s core

functions. It consists of two parts, one written in Java and hosted on a Tomcat1 web

server, and the other written in Erlang and hosted on a Cowboy2 server.

Data tier. The data tier consists of a Key-Value Database and a Database Management

System. In particular, LevelDB is used. This gives us high data flexibility, thanks to the

ability to easily add/remove new entity attributes, and excellent speed performance.

1 http://tomcat.apache.org/
2 https://ninenines.eu/

http://tomcat.apache.org/
https://ninenines.eu/

GameOn | Federica Baldi, Francesco Campilongo, Daniele Cioffo 3

Figure 1. Application three-tier architecture

2.1 JAVA ENTERPRISE MODULE
As already mentioned, the web application is deployed on a Tomcat server. Figure 2 shows

the structure of the directory of the web application.

The software design pattern used is the common MVC (Model-View-Controller). Indeed, each

request from the client browser is passed at first to the Controller. In our case, the Controller

is a Filter/Servlet pair.

The Filter is in charge of carrying out checks, for example on user authentication, and to pass

the request to the Servlet only if the criteria are met.

The Servlet performs any logic necessary to obtain the correct content for display. For

instance, it can communicate with the database and insert the information retrieved inside

a User JavaBean (Model).

It then places the content in the request and decides which View it will pass the request to.

GameOn | Federica Baldi, Francesco Campilongo, Daniele Cioffo 4

The View then renders the content passed by the Controller. In our application, Views are

JSPs (JavaServer Pages).

Figure 2. Structure of GameOn WebApp

Each JSP contains static HTML content along with scriplets, scripts written in Java. Moreover,

a style sheet was created for each page to make the content more appealing.

Servlets handle the registration process, the login and the logout, the game selection, the

saving of game results and the consequent ranking update.

Game dynamics and the interaction between two users are instead managed through

JavaScript. On the one hand, by dynamically changing the HTML document in response to

GameOn | Federica Baldi, Francesco Campilongo, Daniele Cioffo 5

certain actions and, on the other hand, by communicating via WebSocket with the Cowboy

server (which we will discuss in detail in the next section).

Some aspects of the web application are configurable. In fact, the application reads some

parameters from the config.xml file, so it is sufficient to modify the file to obtain the

desired behavior.

2.2 ERLANG MODULE
In this section we consider the use of Erlang, which was a requirement of the system given

to us by the professor; in particular, we discuss the use of Cowboy.

Cowboy is a small, fast, and modern HTTP server for Erlang/OTP. Cowboy provides a full HTTP

stack, and it is optimized for low latency and low memory usage, in part because it uses binary

strings. This allows for low response times. Cowboy provides routing capabilities and

selectively dispatching requests to handlers written in Erlang.

The Web is concurrent, and Erlang is a language designed for concurrency, so it is a perfect

match. Moreover, Erlang allows you to use the same code for communicating with local

processes or with processes in other parts of your cluster, which means you can scale very

quickly if the need arises. This is very important for our availability requirement.

In this application, Cowboy is used to handle web socket requests, that are extensions to

HTTP that emulates plain TCP connections between the client, the Web browser, and the

server.

Cowboy uses different processes for handling the connection and the requests, indeed there

will be one process that handles the requests for each client.

There will be a specific process for each connected client, which will be able to communicate,

through the exchange of messages, with the processes associated to the other clients.

Therefore, we decided to register the processes with the user's username, being unique, and

this has led us to simplify the exchange of messages, because in each message there are also

information on the sender and on the receiver (their usernames).

In addition to these processes, there are others, one for each waiting list (keeps the

usernames of online users waiting for that game) and one that has the task of switching the

messages at the right list.

3 HANDLING CONCURRENCY

3.1 SYNCHRONIZATION
As we mentioned earlier, the design pattern we followed in the Java Enterprise module is the

MVC, where the Controller part is done by Filter/Servlet pairs.

By default, Servlets are not thread-safe, so we have had be careful that our Servlets classes

were indeed safe for operation in a multi-threaded environment.

GameOn | Federica Baldi, Francesco Campilongo, Daniele Cioffo 6

The methods in a single Servlet instance are usually executed numerous times

simultaneously. Each execution occurs in a different thread, though only one Servlet copy

exists in the servlet engine. This efficient system resource usage is dangerous because

multiple threads could try to access simultaneously to the same resource.

In particular, in our application Servlets access two different resources: the configuration file

and the database file.

For efficiency reasons, we wanted the configuration file to be read only once when opening

the application and not every time it was needed. Therefore, we decided to create the

ConfigurationParameters class and make it a Singleton.

In this way, a single instance of the ConfigurationParameters class is shared by the various

Servlets that will be able to retrieve the configuration parameters by invoking getter methods

on it.

Following the Singleton design pattern, an instance of the class is created (and as a result the

configuration file is read) only the first time it is requested; from that point on, all calls to the

getInstance() function will return the exact same instance.

Obviously, being in a multithreaded environment, we had to take some measures.

We could have decided to make the getInstance() method synchronized; that way, we would

have been sure that only one thread at a time could execute the function. However, this

approach would have slowed performance down a lot, so we decided to follow the approach

shown in Figure 3.

Figure 3. ConfigurationParameters class

GameOn | Federica Baldi, Francesco Campilongo, Daniele Cioffo 7

Indeed, once an object is created, synchronization is no longer useful. So, we will only acquire

lock on the getInstance() once, when the object is null. From there on, there are no more

synchronization issues.

Regarding the database, as we have already mentioned, we decided to use a Key-Value

Database and, in particular, LevelDB.

Reading the LevelDB documentation we saw that the database file can only be opened by

one process at a time. Indeed, the LevelDB implementation acquires a lock from the

operating system to prevent misuse.

That said, we decided to follow the same approach just described for the

ConfigurationParameters class. In this case, the KeyValueDBDriver class is a Singleton and,

when getInstance() method is called for the first time, at the same time as the single instance

is created, the database is opened.

Moreover, within the documentation we read that:

“Within a single process, the same leveldb::DB object may be safely

shared by multiple concurrent threads. I.e., different threads may

write into or fetch iterators or call Get on the same database without

any external synchronization (the leveldb implementation will

automatically do the required synchronization).”

So, there was no need to take any other precaution: threads can call any method of the

KeyValueDBDriver class that query the database and it is LevelDB implementation that will

take care of their synchronization.

What has been described so far concerned the Java Enterprise module.

As for the Erlang module, we know that one of the strengths of this language is its ability to

handle concurrency and distributed programming.

Indeed, in an Erlang program it is easy to create parallel processes and to allow them to

communicate with each other. What is more, since these processes do not share data and

their only means of communication are messages, there is no need to handle synchronization

issues.

3.2 COMMUNICATION
The communication between client and server in this project is implemented using a Web

Socket Server, which has been developed using Cowboy.

WebSocket is an extension to HTTP that emulates plain TCP connections between the client,

typically a Web browser, and the server. It uses the HTTP Upgrade mechanism to establish

the connection.

WebSocket connections are fully asynchronous, unlike HTTP/1.1 (synchronous) and HTTP/2

(asynchronous, but the server can only initiate streams in response to requests). With

GameOn | Federica Baldi, Francesco Campilongo, Daniele Cioffo 8

WebSocket, the client and the server can both send frames at any time without any

restriction. It is closer to TCP than any of the HTTP protocols.

The Erlang distributed structure of this project is characterized by multiple processes: one

for each client (the browsers), and others for the system. The processes communicate with

each other following an asynchronous message exchange.

The client sends a request to the server and the server replies back; this exchange of

messages is carried out through a WebSocket.

In this project the communication between the client (browser) and the Erlang Web Socket

server is the engine that allows the application to work.

From the login to the chat message into a game, almost everything is possible by means of

an exchange of messages between a client and a server.

In the following figure there is an example of how the application works during a classical

game match.

Figure 4. Example of communication between clients through the erlang web socket server

As described in Figure 4, the server forwards the move message (earlier received from the

Opponent1) to the Opponent2. This message will be caught by the Opponent2 JavaScript

code and the effects of the move will be displayed on the Opponent2 browser.

In this project, a Tomcat Web server was also implemented.

The communication between the browser and Tomcat server through Servlets and JSP files

allows the user to navigate between the application pages, exploiting overridden methods of

the specific Servlet.

In particular in this project, methods doPost (called by the server – via the service method –

to allow a Servlet to handle a POST request) and doGet (called by the server – via the service

method – to allow a Servlet to handle a GET request) will load the correct JSP, in order to

correctly visualize the page needed for the specific operation requested.

3.3 COORDINATION
The coordination problem was encountered mainly in two situations:

• To send a game request and respond to it by accepting it.

• During the game.

GameOn | Federica Baldi, Francesco Campilongo, Daniele Cioffo 9

This coordination takes place asynchronously, through the exchange of messages between

the Erlang processes associated with the various users. Recall that these Erlang processes do

not need coordination mechanisms.

More precisely, a Message data structure has been defined which contains, in addition to the

message content, also the type of the message, the sender and the receiver.

The coordination is carried out by sending different types of Messages, for example, when I

send my move during the game, I will not be able to send other moves until it is my turn again

(this can happen either because I receive a move from the opponent or because the timer

expires).

Based on the type of message received I will go to perform different operations, for example

if I receive a chat message, I will enter it in the chat box.

	1 Application Requirements
	1.1 Functional Requirements and Use Cases
	1.2 Non-functional requirements
	1.2.1 Flexibility
	1.2.2 Availability
	1.2.3 Speed and Usability
	1.2.4 Using Erlang
	1.2.5 Management of synchronizations, communications, coordination

	2 Structure
	2.1 Java Enterprise Module
	2.2 Erlang Module

	3 Handling Concurrency
	3.1 Synchronization
	3.2 Communication
	3.3 Coordination

