UNIVERSITA DI P1sA

COMPUTER ENGINEERING
Large-Scale and Multi-Structured Databases

WORKGROUP PROJECT DOCUMENTATION

Design and development of “cybuy”:
an Application interacting with NoSQL Databases

Students
Federica Baldi
Tommaso Burlon
Tommaso Giorgi

Academic Year 2020/2021

CONTENTS

1 DESIGN. .ttt ettt e s e s e e e e e e eane 1
1.1 THE APPLICATION. .. ettt ettt ettt e e et e e et e e et s e e eena s e enena e eeennans 1
1.2 REQUIREMENTS ..eeeiie ettt ettt e e et e e et s e e et s e e eena s eeeaaaeaes 1

1,21 IMAiN @CEOIS e e e 1
1.2.2 Functional requirements.......cccceiiiiiiiiii 2
1.2.3 Non-functional requirements.......cccccceeiiiiiii 3
13 USE CASES ...ttt et ettt e s st e e st e e s s e e s nr e e e 4
1.4 ANALYSIS CLASSES. ...ttt s 4
1.5 DATA IMODEL .ottt sttt sttt e st e e s e e senreeeenans 6
1.5.1 Document DB COIIECLIONS ...cccoviiiiiiiiiiiie it 6
1.5.2 Key-Value DB namespaces and Keys........ccccceeiviiiiiiiiiiii, 12
1.6 DISTRIBUTED DATABASE DESIGN.....coeiiiiiieiiiiiee ittt 13
1.6.1 RePliCas ..o 13
1.6.2 Sharding.....cooooiiiiiii 15
1.7 SYSTEM ARCHITECTUREoeiiiiiiiiee ettt ettt 15
1.7.0 ClENt SId@ ittt e e s e e 15
1.7.2 SEIVEE SIO ettt s e e 16
1.7.3 FrameWOrKSeeeeeiiieie ettt 16

2 IMPLEMENTATION. ...cii ittt ettt ettt e s s e s s sr e e s e sre e e s e aneee s 18
21 DATASET <ttt ettt st e e e e s e e s e et ee e e 18
2.2 REPOSITORY STRUCTURE........uttiiiiiiieeeiiieee ettt ettt ettt e s eireee e 18
2.3 MAIN MODULES.....cootiiitiie ittt ettt ettt sttt e e sttt e e e st e e s snreeeeeans 19

D2 70 R w4V d o To T o IV Yo U 1P PPPPPPPRE 19
2.3.2 JAVA MOAUIES ...t e 19
24 CYBUY: MAIN PACKAGES AND CLASSESoiiiiiiiieee ettt 24
D N N 1 o V=N = (UL o - [o] =Y = I PPPPPPPPPRt 25
2.4.2 The persiSteNCe PACKAZEcuvviiiiiiiiiiiiieiiiieeeeeeieeeeeeereeeeereeeeresreerersesrrerrrrrerarae 25
2.4.3 The middleware Packageuuueiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeereeeeeeeseerereeerrerrrrrer———.. 26
2.5 MOST RELEVANT QUERIES.... .ottt 26
2.5.1 MONGODB QUEIIES ..cevreiiiieiiie ettt e et e et e e e et s e e e as e e eat e e e aeaaeeenenaneaes 26
2.5.2 MoONGODB aggregatioNns.......ciiiieiiiiiiiie e 36

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi

LI P OO U TP O PP PR OTPPROTPUTORON 49
3.1 STATISTICAL ANALYSIS. ..ttt e et e e et e e een e e eeean 49
3,11 MONZODB INUEXES ...uuuuueiiiiiiii s 49
3.1.2 Brief Consideration about the CAP Theoremccccccvviiiiiiiiiiiiiiniiiiieceeeeeenn 50
3.2 USER IMANUAL ..ttt et e et s e e et s e e et s e e eena s eeesaaneesenanns 51
3.2.1 NAVIBATION DAr weeeiiiiiiei s 51
3.2.2 REGISTIAtiON ..oviiiieiiiiiie e e e e e e e s 52
30720 T o - {1 B PRSPPSO PPPRP 52
3.2.4 BroWSING ProAUCES ..uuuuueieiieiiiiii s 53
3.2.5 Product DetailS.......cocoriiiiiiiiiieei et 54
3.2.6 ACCOUNT PAGE couuiiiiiii ittt e et s e e et s e eea s s e eaaaseeeees 55
3.2.7 Orders HiSTOIY....uuuuueiueiiie s 56
3.2.8 Standard User functionalitiesccceeerviieiiiiiiie e 58
3.2.9 Seller functionalities........ccoovieieiiiiiiiee e 60
3.2.10 Administrator functionalitiescceoveveeiiiiiiiii e 61
LIST OF FIGURES ..ottt ittt ettt ettt st e s st e s s e e s s mse e e s s snr e e e s eans 62

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi [l

1. Design: The Application

1 DESIGN

1.1 THE APPLICATION

cybuy is an e-commerce application whose focus is on electronic products. It aims to make
the purchase process easier for customers and to allow sellers to manage their products and
their sales.

As previously stated, the application can be used both from customers and sellers.

Customers can use the application in order to browse the list of available products, see the
details of a specific product, and decide whether to add it to their cart or to their wishlist.

In addition, customers can place orders, keep track of their previous ones and they can decide
to leave a review on the products they have already bought.

On the other hand, sellers can manage their inventory — by adding new products and
modifying or deleting old ones — and they can visualize the list of orders and fulfill them.

cybuy also provides an analytics section, through which sellers can visualize sales reports and
reviewing performance, and take business decisions accordingly.

1.2 REQUIREMENTS

1.2.1 Main actors
The application is meant to be used by four different types of actors:

e Anonymous Users, who can browse products and their details, but are not allowed
to buy or do anything. They can log into the application with their username and
password, or they can sign up (either as Standard Users or Sellers).

e Standard Users, who are the customers of the e-commerce application. They can
search for products (applying filters on demand), place orders and manage their cart
and wishlist.

e Sellers, who can put products up for sale, manage their incoming orders and perform
sales analytics.

e Administrators, who are special Sellers holding high-level privileges. Indeed, they can
delete other Sellers when necessary (for instance, if they are scammers or if they
have only bad reviews).

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 1

1.2.2

1. Design: Requirements

Functional requirements

The functional requirements of the application are listed below.

The application must provide a registration form in order to allow new users to sign
up, either as Standard Users or as Sellers?.

The application must handle the login process, so that Anonymous Users can identify
themselves via a username and a password.

The application must handle the logout process, so that Standard Users, Sellers, and
Administrators can disconnect from the system.

The application must also give Standard Users, Sellers, and Administrators the
opportunity to delete their account if they no longer wish to use the offered services.

Anonymous Users must be denied the chance to buy products or to sell them.

Anonymous Users and Standard Users must be given the ability to browse the list of
for-sale products, optionally using parameters?.

When selecting a product, Anonymous Users and Standard Users must be able to
view its details.

While viewing the details of a product, Standard Users must be given the opportunity
to add the product either to their cart or to their wishlist.

Standard Users must be offered the possibility to manage their cart, either by
changing the quantity of a product, removing a product, or emptying the whole cart.

When the cart contains the products to be purchased in the right quantity, Standard
Users must be able to place an order.

The application must provide Standard Users with an orders section, where they can
view their order history and the details of each order (such as its status and the list
of ordered products).

If an order has not been shipped yet, Standard Users must be able to cancel it.

Standard Users must be offered the possibility to manage their wishlist, both by
removing a product and moving it to the cart.

Standard Users must be able to leave reviews? of products they have purchased and
already received.

Sellers must be given the opportunity to put products up for sale, specifying their
details and the available quantity.

1 Note that it is not possible to sigh up as Administrators. In fact, application Administrators are
already pre-registered.

2 parameters provided by the application are filter by category (and subcategory), filter by keyword,
sort by price and sort by reviews.

3 A one-to-five-star rating of the overall product quality and seller reliability.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 2

1.23

1. Design: Requirements

The application must show Sellers the list of products they have put on sale. When a
product is selected, the application must display its details.

Sellers must be able to edit the details of products they have already listed for sale
and, whenever necessary, to delete a product.

The application must provide Sellers with a section related to incoming orders, by
which they can view the list of ordered products, change the status of orders, and
fulfill them.

The application must provide Sellers with an analytics section, where they can view
reports and sales statistics. In particular, Sellers can view:

o their best-selling Product;

o how many Products they have sold;

o their total earnings;

o the average delivery time;

o the average number of stars received and their distribution;

o amonthly chart showing daily sales, with some statistical information about
customers (such as their gender and age).

Administrators must be offered all the functionalities offered to Sellers.

Administrators must be given the authority to delete other Sellers' accounts if the
need arises.

Non-functional requirements

The following list outlines the non-functional requirements of the application.

High Availability: The application must guarantee 24/7 service, so that users can use
it whenever they want to.

Usability: The application must be user friendly, that is easy to use, with a simple and
intuitive user interface.

Performance: The application must ensure short response time and low latency, so
that its use is enjoyable.

Fault tolerance: The application must be able to continue operating properly in the
event of a failure.

Scalability: The application must be able to handle a growing number of users and
products on sale.

Security: Users passwords must be protected and stored encrypted.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 3

1. Design: Use Cases

1.3 UsE CASES
Figure 1 shows the UML use case diagram representing users’ interaction with the system.

Minimum Privilege Required
Dolee Account - P -

[aasowaniat | |

..........

- Admestrars

Login o
Logs oA x
/ vy Y . U oty Procuct
o \ [(Set P [DE— et Keyword o
! \,‘ - | i3
%, \] o o
. o Son Gogory oo Set Subcatngory
= Set *Price: High to <t Set Soring.
Flaca Ot S L S Arceymous Usee R , vl ™
\ 5 \ St St i
X \ 2 Low et
~ ‘ —A X E N TRl
i NN \ 7 _——.
N Set pree: L
= ! - pes L SetS Lowto
Product 2 o sert
Remave Product
he Gart / Browse Orde iay
/ o | ov(OmweOdss) i T
/
Y, “hcucess. | »| FiodanOrdar }--ccnchuen---»| View Orcor Detals 4 - <comsncr - Modey Orcee Staus
> viow wihiet
NE.
*
-
Move Procuct to the — ’
Gan
Viow Anyic
Pamae Product o
e vt
56 N

Erowse Solers - 2 > Fidaseler Dclete Soler

...........

Figure 1. UML diagram of the main Use Cases
The main use cases are explained in detail below.

e Browse Products: The application will show a list of products, along with their
description, image, and price. For Anonymous Users and Standard Users, this will be
the list of all available products, while for Sellers it will be the list of products they
have put up for sale.

e View Product Details: By selecting a product in the browsable list, users are given a
more in-depth view of it. Standard Users can add the product to their cart or to their
wishlist, or they can leave a review (if they have purchased and already received the
product). The Seller of the product may change its details or decide to delete it,
namely remove it from sale.

e Browse Orders (requires Login): The application will display the list of all placed
orders. For Standard Users, this will be the list of outgoing orders, while for Sellers it
will be the list of incoming ones. Both Standard Users and Sellers are given the
opportunity to delete an order if it has not been shipped yet. Only Sellers are given
the ability to update the status of the order, as it is being processed, shipped and,
finally, delivered.

1.4 ANALYSIS CLASSES
Figure 2 shows the main entities of the application and the relationships between them.

Users are characterized by their name and surname, email, a username and a password, their
gender, age, and their location.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 4

1. Design: Analysis Classes

Users must be either Standard Users or Sellers; Sellers may also be Administrators.

1 0..N
S Cart —
14_/
1 1 . 0..N
| StandardUser n—————— Wishlist —
E—
i
...N 0..N
0N Review —
0..N
N
User < < Order
0...N
1..N (1) N
Product e’
0...N
1
-
1
— Seller

T

Administrator

Figure 2. UML diagram of the Analysis Classes

Each Seller may have none or many Products up for sale. Each Product must have its own
seller.

All Products have some common information associated with them — such as a short
description, an image, and their price — together with some specific fields.

Indeed, the details associated with a product can vary, in both nature and quantity,
depending on the type of the product (which is itself an attribute).

Standard Users are (uniquely) associated with their personal Cart and Wishlist; both may
contain zero or many Products.

Inthe Cart, each Product is associated with its quantity, whereas in the Wishlist, each Product
is associated with the date of its addition to the list.

Standard Users may have placed zero or many Orders and, similarly, Sellers may have zero or
more incoming Orders.

Each Order contains at least one Product, but it may contain many, and it must be associated
with the Standard User who placed it and the Seller who put the Product(s) up for sale.

Furthermore, Orders are characterized by some information such as the date they were
placed, their status (e.g., “sent”, “delivered", etc.) and their total amount.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 5

1. Design: Data Model

Standard Users may have left none or many Reviews for the Products they purchased. Each
Product may not have any Reviews yet, or it may have many.

Reviews must be associated with the Standard User who left them and the Product they refer
to. Each Review also contains the number of stars assigned to the Product (from one to five).

1.5 DATA MODEL

1.5.1 Document DB collections
The Document Database will handle the entities of User (all its specializations), Product,
Order, and Review.

Figure 3 below shows the corresponding section of the UML diagram of the Analysis Classes
for greater clarity.

1 0..N
'S Standard User Review
1 0..N
0...N 1
1..N
User <+ Order 0N 1..M Product
0...N 0..N
1

Seller

T

Administrator

Figure 3. Section of the UML diagram of the Analysis Classes

Documents will be organized in four collections, namely Users, Products, Orders and
Analytics.

1.5.1.1 Users Collection
The Users collection will maintain information about all types of Users (Standard Users,
Sellers, and Administrators).

Fields containing general personal information such as name, surname, email, password,
username, gender, age, and location are present in all documents.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 6

1. Design: Data Model

For security reasons, the password field is an embedded document containing the User’s
encrypted password and the encryption key required for authentication (salt).

Also, a role field is present to distinguish between the three types of Users and to offer them
the different functionalities of the application accordingly.

{.

" id": {=
"$oid": "Sfefd4603c93eab08c9ef8ead"

b
“country": "Italy",
"role": "User",
“name": "Tommaso",
“surname": “"Giorgi",
“email": "tommy@mail.it",
"username": "Tomawk",
"gender": "Male",
“age": 22,
"orders": [=

"$oid": "60095be5a701245a1000bb30"

price": 129.99,
"seller_username"”: "RassyuM",
"state": "pending",
"order_date": {-
"$date": "2021-01-21T10:48:05.5472"
s
"orderedProduct”: [
(-
“productId": "5fe9a411845df@04b4acebds"”,
"ordered_quantity": 1,
"description": "Pritom 1@ inch Android Tablet Octa-Core, 3GB RAM, 5G WiFi, GPS, Bluetooth 5.0, ...",
“"image": "https://m.media-amazon.com/images/I/71CPCbUsZ9L._AC_UY218_.jpg"

}
1,
"reviews": [=
{.
"productId”: "S5fdb8eddeel189329746b6e24",
"stars": 3
s
(-
"productId”: "S5fe%9a2d2845df@e4bdacbaa8”,
"stars": 5
}
1,
“password_info": {i=
"password": "9M7EjfxTiffu866mbtéw7YnmGqiOiouKAWiP13XvvKA=",
"salt": "LgfEuZu9hMRyKUSh6vmKevYZwDbjl8"

Figure 4. Example of document in the Users collection (Standard User)

The orders field is an array of nested documents regarding Orders. As can be seen in Figure 4
and Figure 5, the fields of the nested documents are slightly different depending on the type
of User.

For instance, Order documents for Standard Users will contain the username of the Seller,
while Order documents for Sellers will contain the username of the User.

7’

In addition, redundancies regarding the ordered products are also included in the Users
documents. In this way, some details about them will be easily visible along with the order
overview.

Since letting the number of members in embedded documents increase without limit can
lead to problems, once delivered, Orders will be moved to the Orders collection that will be
presented in detail later.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 7

1. Design: Data Model

Figure 4 shows how only documents regarding Standard Users contain a reviews field, which
is an array of embedded documents. Each Review contains the ID of the Product it refers to
and the number of stars assigned to it.

Documents regarding Sellers, instead, contain a field for products on sale, that is an array of
IDs of Products they put up for sale (Figure 5).

{_

"id": {E=
"$o0id": "5fdf8787a8335e8908cle30c"

Is

“role”: "Seller",

"products_on_sale": [[=
"5fe9a411845dfeedbdacebd5”,
"5fe9a420845dfe04bdacefdl”,
"5feb41a684937b2318c556dc",
"5feb41a784937b2318c55ad8"

]

B
"name": "Abigail",
“surname": "Titus",
"email": "nokia_20008@xxxXX.xxx",
"username": "RassyuM",
"gender": "Female",
"country": "France",
"age": 38,
"orders": [I=
{_
"_id": {=
"$o0id": "60095be5a701245a1000bb30"
s
"price": 129.99,
"user_username”: "Tomawk",
"state": "pending",
"order_date": {i=
"$date": "2021-01-21T10:48:05.547Z"
s
"orderedProduct™: [=
{_
"productId": "5fe9a411845dfe@e4bdacebd5”,
"ordered_quantity”: 1

}

1,

"password_info": {=
"password"”: "YOOkEFuJ3vcSeGcYBCbfcUnSQLL5tYOPHO13kHmMWFTY=",
"salt”: "OuTZdn4EDEVOx4yCBK4YRIIzxLfRIR"

Figure 5. Example of document in the Users collection (Seller)

Although document linking is somewhat unnatural for document databases, it seemed the
most appropriate choice given the nature of the queries the application must answer.

In fact, it is important for documents regarding Products to be stored in a separate collection,
in order to make the search and purchase processes more straightforward.

Also, since a lot of information must be maintained for each Product, it would have been
unfeasible to embed Products documents into the document of their Seller.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 8

1. Design: Data Model

1.5.1.2 Products Collection
The Products collection will maintain information about all types of Products.

The fields description, image, product type, price, and quantity available are present in all
documents and must be specified by the Seller when inserting a new Product.

The details field contains a document whose size and content vary depending on the type of
Product. For example, since the Product whose document is shown in Figure 6 is a tablet,
information about the operating system, storage capacity, and screen size are listed.

The seller field contains the username of the Seller who put the Product up for sale. The
application will take care of keeping this reference consistent with the products on sale field
in the document of the Seller.

All other fields, namely quantity sold, total reviews and average review, will be automatically
added and kept updated by the application.

These fields are redundant, because their value could be derived each time from other data
present in the database. However, since they do not require large amounts of memory, it is
more convenient — performance wise — to store them than to compute them on-demand.

{_

"id: {E
"$oid": "5fe9a410845dfeR4bdaceb85"

s

"description”: "VANKYO MatrixPad S8 Tablet 8 inch, Android 9.0 Pie, 2 GB RAM, ...",

"image": "https://m.media-amazon.com/images/I/71zBBUXrnSL._AC_UY218_ .jpg",
"product_type"”: "tablet",
"details": {i=
"Display_Size": "8 Inches”,
"Screen_Resolution": "1286x860",
"Brand”: "Vankyo",
"Model_Number": "S8",
"Operating_System"”: "Android 9 Pie",
"Weight": "11.2 ounces",
"Product_Dimensions"”: "8.21 x 4.89 x ©.35 inches",
"Color": "Black",
"Storage": "32 GB"
s
"total_reviews": 2,
"quantity_sold": 3,
"quantity_available": 44,
"price": 84.99,
"average_review": 4.5,
"seller_username”: "nsfw_1324"

Figure 6. Example of document in the Products collection

1.5.1.3 Orders Collection

The Orders collection will maintain information about Orders that have already been
received. As anticipated earlier, once an Order is delivered, its data within Users” documents
are deleted and moved to this collection.

This solution has several advantages. First, it eliminates the duplication of information
regarding the same Order in multiple documents.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 9

1. Design: Data Model

Moreover, in some way it puts a limit to the size of Users” documents. In fact, supposedly a
single Standard User will not place many Orders together in a short period of time and Sellers
will try their best to fulfill Orders as soon as possible.

The main drawback is that retrieving past Orders will be definitely slower than retrieving
current ones.

However, Standard Users will most likely be interested in viewing in-progress Orders and
their status updates, and less interested in viewing those regarding items they have already
received.

Similarly, Sellers will be more interested in viewing the details of Orders they have yet to ship,
rather than those they have already fulfilled.

As shown in Figure 7, each document in the Orders collection contains fields about price,
seller username, user, dates of delivery and order, and a field for ordered products.

This last field is an array of embedded documents, each of which contains the ID of the
Product ordered and in what quantity.

The user field is also an embedded document, containing the username of the User who
placed the Order and some of his/her personal information that will be useful for computing
analytics.

{_
" id: {E
"$o0id": "600424b6b4b83e621962d1b6"
s
"price": 249.99,
"seller_username”: "Jer456556412",
"user": {=
"username": "Tillandz",
"age": 32,
"gender"”: "Female"
Ts
"delivery_date": {i=
"$date": "2021-01-03T11:19:54.818Z"
Ts
"order_date": {=
"$date": "2021-01-01T11:19:54.818Z"
Ts
"orderedProduct”: [I=
{_
"productId”: "S5fe9a3ff845dfee4bdace8ad”,
"ordered_quantity": 1
s
{_
"productId”: "5fdb8edc@el89329746b645e",
"ordered_quantity": 1

Figure 7. Example of document in the Orders collection

1.5.1.4 Analytics Collection
The Analytics collection will contain all documents related to the analytics of the Sellers.

Since performing the various aggregations needed is computationally intensive, analytics
cannot be computed on-demand because this would significantly slow down the application
performance.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 10

1. Design: Data Model

Therefore, analytics for each Seller are calculated once a day on the server side and then
stored in the corresponding document.

Obviously, one of the disadvantages of this choice is that Sellers may view outdated
information. However, this is acceptable because reports only need to be a guide for business
decisions, and they do not have to be real-time.

Each document in the Analytics collection (Figure 8) contains the username of the Seller and
the month it refers to, along with the computed analytics.

Specifically, it contains: the total number of reviews, the average review and the distribution
of stars obtained, the average delivery time, the total earnings, the total sales, the best-
selling product, and daily information regarding sales.

When analytics are calculated for a Seller, if a document already exists for that Seller and for
that month, the document is updated, otherwise a new document is created.

In order to prevent the document from growing beyond the space allocated to it and having
to be moved to another location, at the time of creation the document already contains all
the required fields. In particular, the sales by day field already contains the embedded
documents for each day of the month, with all fields set to 0.

{,
"_id": {k=
"$o0id": "60033fec64c@176144520a3d"
}s
"seller_username"”: "jason8601",
"total_reviews": 57,
"avg_reviews": 3.57894736842108527,
"avg_delivery": 2,
"total_earnings": 29831.36,
"total_sales": 95,
"month": 1,
"best_selling_product”: {=
"productId”: "5fe9a29b845df@o4bdacbdel”,
"description”: "iRecadata L41 Portable SSD Drive, External Solid State Drive,USB 3.0,..."
}!
"star_distribution": {=
Til-g g
Uiy (G
"3": 16,
"4": 11,
"5": 18
}s
"sales_by_day": [I=
{,
"day": 1,
"all_sales": 9,
"male_sales": @,
"female_sales": 9,
"young_sales": @,
"old_sales": @
s
{_
"day": 2,
"all_sales": 1,
"male_sales": 1,
"female_sales": @,
"young_sales": @,
"old_sales": 1
}J
{_
"day": "
5
1
}

Figure 8. Example of document in the Analytics collection

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 11

1. Design: Data Model

1.5.2 Key-Value DB namespaces and keys
The Key-Value Database will be in charge of handling the entities of Standard User, Cart,
Wishlist and Product.

For greater clarity, the relative section of the UML diagram of the Analysis Classes is displayed
in Figure 9.

1 0..N
— Cart
1
— 0..N
Standard User Prod
1__\ roduct
~— Wishlist
1 0..N

Figure 9. Section of the UML diagram of the Analysis Classes

Both Cart and Wishlist are involved on the one hand in a one-to-one relationship with
Standard User, and on the other hand in a many-to-many relationship with Product.

With the aim of avoiding potential key-naming conflicts, two namespaces have been defined,
one for the Cart and the other for the Wishlist.

This results in the addition of a prefix to the keys, namely cart and wishlist, respectively.
The final key-value configuration for the Cart is the following:

cart:user:Suser id*:product:$product id’:quantity = Squantity value
Whereas here is the final key-value configuration for the Wishlist:

wishlist:user:Suser id:product:$product id:date = $Sdate value

The Key-Value Database will also act as a cache to make quickly accessible some information
regarding Products placed in a Cart or in a Wishlist.

Not all details regarding a Product need to be visible from the Cart and/or in the Wishlist, but
it would be beneficial to at least have the basic information.

For instance, in this Database redundancies will be introduced on the Product description,
image, and price.

The resulting key-value configuration is the following:
product:$product id:$attribute = Sattribute value

The application will be responsible for keeping the redundant information consistent with
the Document Database.

* Note that the user id is the same one used in the Document Database to uniquely identify a User.
> Note that the product id is the same one used in the Document Database to uniquely identify a
Product.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 12

1. Design: Distributed Database Design

Also, since the Key-Value Database already tends to be memory-intensive, an algorithm that
can free up some of the allocated cache memory when needed must be implemented.

To do this, a usage attribute is also stored for each Product; its value indicates how many
Carts and Wishlists currently contain that Product.

product:$product id:usage = Susage value

1.6 DisTRIBUTED DATABASE DESIGN

The entire database will be deployed on a cluster of servers. At the moment, the cluster will
be composed of three servers, but if in the future the load on the system increases, it will be
easily possible to add servers to the cluster and scale horizontally.

1.6.1 Replicas
Since high availability and fault tolerance are two of the non-functional requirements of the
application, it may be beneficial to save multiple copies of data in the cluster.

However, since performance is also among the non-functional requirements, it is important
to choose a number of replicas that is not so large.

A trade-off between the two requirements could be to set to three the number of copies of
each data item that the database will maintain.

1.6.1.1 Document Database Replicas
With respect to Document Database replicas, the servers will be configured in a master-slave
replication model, with one primary node and two secondary nodes.

All read operations will be directed to the primary node; however, in order to ensure high
availability, if the primary node is down, operations will read from secondary nodes®.

All write operations will be send to the primary node, but the number of copies of the data
item that must be written before the write can complete will depend on the collection (as
shown in Table 1).

Collection Name |W |R W = number of copies that must be
Users 3 1 written before the write can complete
Products 2 2

Orders 2 2 R = number of copies that the
Analytics 3 1 application will access when reading

Table 1. Read/Write Concerns for each Collection

The decision to distinguish read and write concerns by collection comes from the fact that
different collections contain different information, with different importance and update
frequency.

We want the login process to be as fast as possible and user's current orders to be quickly
retrievable as well, so read operations to the Users collection must be fast.

®In MongoDB, Read Preference is set to primaryPreferred.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 13

https://docs.mongodb.com/manual/core/read-preference/#primaryPreferred

1. Design: Distributed Database Design

Writes, on the other hand, can be slower because these only occur during the registration
process and order creation, times when data consistency is important, and the user may be
willing to wait a little while.

Both reads and writes to the Products and Orders collections need to be reasonably fast, but
still consistent. In fact, we do not want a user to see outdated information about a product
or to buy a product that is actually no longer available.

Furthermore, writes, but especially reads towards the Orders collection will not happen as
often. This is because, as we have already mentioned, users will not be very interested in
viewing their past orders and, server-side, analytics will be calculated on the Orders collection
only once a day.

As for the Analytics collection, write operations are sent only once a day and from the server
side, so there is no need for them to be as fast as possible. Also, we want the computed
information not to be lost and to be quickly accessible for users to read.

1.6.1.2 Key-Value Database Replicas
As for the Key-Value Database replicas, the servers will be configured in a masterless
replication model and set up in a ring structure, as shown in Figure 10.

l'_.

Figure 10. Ring structure

This means that there is not a single server that has the master copy of updated data, instead
servers in the cluster must collaborate to keep the replicas consistent with each other.

Each server can accept both read and write requests. Whenever there is a write operation to
one of the servers, the updated piece of data is also written to the two servers linked to the
original one, namely its neighbors.

A write request returns once the first copy is written, the other two will happen later.
Similarly, a read request reads a single version only.

Obviously, with this configuration the risk is that data will be lost if a node fails before the
second write or that the data read may not be the last version. However, speed of operations
and high availability must be prioritized over consistency.

Within the same session, all reads and all writes from a client will always be sent to the same
server, unless the server is down. In this way, an attempt is made to ensure session
consistency.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 14

1. Design: System Architecture

If the server fails, the client will automatically try to contact another server. Once again,
availability is favored over consistency; users can accept their cart or wishlist to be
inconsistent once in a while, but could not bear the application to stop working.

1.6.2 Sharding

In a scenario where the number of users grows rapidly, the size of the database will also grow
accordingly, and it may become unfeasible to maintain an entire copy of the database on a
single server.

Moreover, as introduced earlier, if the load of the system increases, it would be convenient
to add servers to the cluster.

In this case, an appropriate solution would be sharding the data and choosing a partition
scheme to distribute the workload as evenly as possible.

Since there are neither document fields nor keys that by themselves naturally distribute
workloads evenly, a hash function would be appropriate to generate the shard key.

The hash function would be applied to the unique document IDs of all documents in the
Document Database and to keys in the Key-Value Database.

A possible solution would be then to divide the hash value by the number of servers and to
use the remainder to locate the node where the shard should be stored.

However, the application could catch on the international market and the database could
grow further, requiring the addition of more servers. Or it may unfortunately prove to be a
failure and some servers could be removed from the cluster.

In any case, the best solution for the application needs is to apply consistent hashing.

First, we would need to calculate the hash value of the IP addresses of all the servers in the
cluster. Then, we would calculate the hash value of each document ID and each key and
assign the relative object to its successor server in the address space.

The replicas for each shard would still be three and, taking advantage of the fact that the
servers are already logically placed in a circle, every object would also be copied to its
predecessor server and to the successor server of its successor server in the address space.

1.7 SYSTEM ARCHITECTURE

The architectural pattern used for the design of the overall system is the common two-tier
client-server one (Figure 11). Clients, for instance the users of the application, will request to
guery the database to servers in the cluster.

1.7.1 Client Side
On the client side, the Presentation Layer and the Logic Layer run.

The Presentation Layer displays information related to the services offered by the
application, such as browsing products, purchasing, and shopping cart contents. It consists
of a Graphical User Interface that users can access directly.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 15

1. Design: System Architecture

Its main task is to translate the actions performed by users into requests for the underlying
layer and, once the results are received, to translate these into something users can
understand.

Presentation Layer

.\ J

Logic Layer
Clent — T
Side
Server
Y _ Side
Data Layer ‘
Database

Figure 11. Two-tier Client-Server Architecture

The Logic Layer acts as an interface between the Presentation Layer and the Data Layer,
located on the server side.

It is in charge of processing requests coming from the Presentation Layer, computing all the
right calculations, and passing them to the Data Layer (via a specific communication
protocol). Once the data is received from the database, the Logic Layer is responsible for
manipulating them and sending them back to the Presentation Layer.

1.7.2 Server Side
On the server side, a copy of the database (both the Document Database and the Key-Value
Database) is maintained, and the Data Layer runs.

The Data Layer function is to receive requests from the Logic Layer and to perform the
necessary operation into the database.

Demands from the Logic Layer could be either queries to retrieve data or requests to modify
the database (insertions, updates, deletions). In any case, once the demanded operation is
performed, information is passed back to the Logic Layer, and then eventually back to the
user (Presentation Layer).

1.7.3 Frameworks
As shown in Figure 12, the application code will be written completely in Java, with the
addition of JavaFX for the GUI.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 16

1. Design: System Architecture

Concerning databases, MongoDB’ will be used for the Document Database, and LevelDB® will
be used for the Key-Value Database.

Since LevelDB does not natively support the creation and management of replicas, a specific
service will be implemented in Java.

Apache Maven® will be used as a tool for building and managing the whole application, while
for version control Git (in particular, GitHub°) will be used.

e
_________________ Y o

f 7 Client Side

5 4

' >

. ~=_ Application

! Java Logic

E ¥

v;~
" :
. mongo @ levelps

\ Databases Drivers) /
@ 172.16.3.138 @172.15.3.139 @ 172.16.3.140

‘mongo > .mongo M .mongo

= —)
g levelos B leveloe b levelps
A

Figure 12. System architecture

7 https://www.mongodb.com/

8 https://github.com/google/leveldb
% https://maven.apache.org/

10 https://github.com/

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 17

https://www.mongodb.com/
https://github.com/google/leveldb
https://maven.apache.org/
https://github.com/

2. Implementation: Dataset

2 IMPLEMENTATION!?

2.1 DATASET
At the beginning of the implementation process, a real dataset that met the needs of the
application had to be retrieved.

Since cybuy is an e-commerce application whose focus is on electronic products, there were
mainly to find information about two entities: products and users.

The dataset for products is the result of scraping algorithms performed on different websites.
Finding information regarding the products was not difficult, but it was necessary to take
some measures to ensure that each generated document contained the fields previously
indicated in the Data Model section.

On the other hand, finding a dataset containing real users was not possible due to privacy
policies, so it was decided to combine different sources. In particular, a dataset containing
usernames, a dataset containing names and another one containing emails, password, and
other personal information??, were merged to form a single dataset.

The two datasets thus obtained were inserted into the Document Database and further
adjustments were then performed on them.

First, each user was assigned a role in a pseudo-random way (either Standard User, Seller or
Administrator). Then, each product was associated with its own seller.

Finally, other entities such as orders and reviews were generated once again by some
pseudo-random algorithms, in an attempt to mimic human behavior.

2.2 REPOSITORY STRUCTURE
The project repository, whose structure is displayed in Figure 13, is organized as follows:

e AddOn. This folder contains all the resources used in the cybuy module. In turn, it is
organized into subfolders, containing the CSS, fonts, images and FXML needed to
load the GUI.

e cybuy. This folder contains the code of the application to be run on the client side.

e daemon. This folder contains the code for a program that will run on the primary
MongoDB server to update the analytics documents.

e serverlLevelDB. This folder contains the code that will run on the three servers to
manage queries and replicas on LevelDB.

e Web Scraping. This folder will contain some of the scripts written for web scraping.

e Database Dump. This folder will contain a dump of the Document Database.

11 All the source code for the application and a dump of the database can be found on GitHub at the
following link: https://github.com/Tomawk/cybuy-group17

12 Dataset containing reddit usernames, dataset containing most popular names, dataset containing
bank customers details

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 18

https://github.com/Tomawk/cybuy-group17
http://www.kaggle.com/colinmorris/reddit-usernames
https://data.world/chhs/4a8cb74f-c4fa-458a-8ab1-5f2c0b2e22e3
https://www.kaggle.com/mathchi/churn-for-bank-customers
https://www.kaggle.com/mathchi/churn-for-bank-customers

2. Implementation: Main Modules

cybuy

? ? AddOn
| ' ; CcSs
E ? cybu E
ybuy Font
? ? daemon i
FXML
serverLevelDB
; Images
? 7 Web Scraping
i ?Database Dump

Figure 13. Directory structure of the project repository

2.3 MAIN MODULES
For the purpose of developing the application, four modules were written, three of them in
Java and one in Python.

2.3.1 Python Module
The module written in Python was used in the first phase to populate the database. In fact,
it consisted of some scraping scripts able to retrieve useful data from various web sites.

In particular, multiple scripts were written in order to scrape information about electronic
products mainly from Amazon'?, eBay'* and GAME®>.

Some of the scripts are included among the source files on GitHub to serve as an example,
but we will not discuss their implementation in detail because it is beyond the focus of this
documentation.

2.3.2 Java Modules
Of the three modules written in Java, one will run client-side and the other two will run
server-side.

The client module is called cybuy and contains all the code needed to run the application.
Details about its implementation will be discussed in the next section.

The two server modules are daemon and serverLevelDB.

13 https://www.amazon.com/
4 https://www.ebay.com/
15 https://www.game.co.uk/

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 19

https://www.amazon.com/
https://www.ebay.com/
https://www.game.co.uk/

2. Implementation: Main Modules

2.3.2.1 daemon
As its name suggests, this module contains the code for a daemon that will run on the primary
MongoDB server every day at 00:01 (as shown in Figure 14).

workgroup-17@ProfileLARGESCALES7: $ crontab -1

Calculate analytics at ©0.01 every day
10 * * * java -jar /home/workgroup-17/daemon/daemon.jar > /home/workgroup-17/daemon/log.txt

Figure 14. Command crontab -1 executed on the primary server (IP: 172.16.3.138)

The purpose of this program is to calculate the analytics of all sellers and update the
corresponding documents within the Analytics collection.

In the main() function, updateAnalytics() is called. As shown in Figure 15, this function, in
turn, calls all the functions to calculate analytics for every seller present in the Users
collection.

oid updateAnalytics(
urrentDate = n
cal =

e(currentDate);

int currentMonth = cal
int analyticsDay = cal

int analyticsYear = cal.get(Cal

FindIterable<Document> documents = usersCollection.find(or(eq("role”, "Admin"), eq("role", "Seller")))
nt document : documents

ng username = document.getString(“"username");

User seller = User.UserBuilder setUsername (username) ;
getReviewsAnalytics(seller);
nt totalReviews = seller.g
avgReviews = seller.getAve
averageDeliveryTime = getAverageDeliveryTime(seller);
e totalEarnings = getTotalEarnings(seller);
t totalSales = getTotalSales(seller);
Product bestSellingProduct = getBestSellingProduct(seller);

int[] numberOfStars = getNumberOfStars(seller);

DailyAnalytics dailyAnalytics = getDailyAnalytics(seller, analyticsDay, currentMonth, analyticsYear);

FindIterable<Document> analyticsDocument = analyticsCollection.find(and(eq("seller_username”, username), eq

currentMonth

Figure 15. Function updateAnalytics() code — PART |

The aggregations computed on MongoDB to retrieve analytics for each seller will be
explained in detail in the concerning section MongoDB aggregations.

After performing the necessary calculations for each seller, the function checks whether or
not a document for the current month already exists regarding that seller in the Analytics
collection.

If the document already exists, it is updated with the newly calculated values (Figure 17).
Otherwise, a new empty document is created, already containing all the documents
concerning each day of the month, as anticipated in the Data Model section (Figure 16).

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 20

2. Implementation: Main Modules

if (analyticsDocument.first() null) {

ArraylList<DailyAnalytics> salesByDay = new ArrayList<>(
for(int 1 = 1; 3 i++)

DailyAnalytics empty =

salesByDay

salesByDay t(analyticsDay-1, dailyAnalytics);

analytics

username)
otalReviews)
avgReviews)
(averageDeliveryTime)
totalEarnings)
1Sales)
bestSellingProdu
1(numberofstars)

salesByDay) ild(

Document newDoc = convertAnalyticsToDocument(analytics);
System .prin ("New document: inserted analytics for seller " + username)

analyticsCollection.

Figure 16. Function updateAnalytics() code — PART Il

analytics = convertToAnalytics(analyticsDocument.
ArraylList<DailyAnalytics> salesByDay = analytics.

salesByDay. nalyticsDay-1, dailyAnalytics);

analytics.setTot iews(totalReviews)
(avgReviews)
(averageDeliveryTime)
3s (totalEarnings)
1sales)
(bestSellingProduct)
(numberofStars)

(salesByDay 1d
ument newDoc = convertAnalyticsToDocument(analytics);

n("Document already present: updated analytics for seller " + username);

analyticsCollection.repl (eq("_id", new ObjectId(analytics j i1())), newbDoc);

Figure 17. Function updateAnalytics() code — PART IlI

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi

21

2. Implementation: Main Modules

2.3.2.2 serverlevelDB
LevelDB does not natively provide support for creating and managing replicas, nor for multi-
process access to the same database file. For this, the serverLevelDB module was written.

As previously mentioned, as far as it concerns the Key-Value Database, the three servers
within the cluster have been organized in a masterless replication model. In order to do so,
servers will need to run the code contained in this module.

The code is the same for each of the three servers, except for a few minor changes. In fact,
the address and port variables for the first and second servers will be set accordingly on each
server (Figure 18).

Server {
LevelDB
String

String

Figure 18. Class Server variables

Each server is a multithreaded one; whenever a client sends a request, a thread is generated
to process it. In order to accept multiple requests from multiple clients at the same time,
multiple threads are generated.

By implementing a multithreaded server, the waiting time for the client decreases. Indeed,
while in a single-threaded server other users have to wait until the running process gets
completed, in multithreaded servers all users can get a response at a single time, so no user
has to wait for other processes to finish.

Moreover, although a LevelDB database can only be opened by one process at a time, inter-
thread concurrency is not an issue, as stated in the official documentation®®.

“Within a single process, the same leveldb: : DB object may be safely
shared by multiple concurrent threads. l.e., different threads may
write into or fetch iterators or call Get on the same database without
any external synchronization (the leveldb implementation will
automatically do the required synchronization).”

The Server class has the following tasks, as shown in Figure 19:

e Establishing the Connection: Server socket object is initialized and inside a while loop
a socket object continuously accepts an incoming connection.

e Obtaining the Streams: The InputStream object and OutputStream object is
extracted from the current requests’ socket object.

16 https://github.com/google/leveldb/blob/master/doc/index.md

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 22

https://github.com/google/leveldb/blob/master/doc/index.md

2. Implementation: Main Modules

e Creating a handler object: After obtaining the streams and port number (client Socket
object), a new ClientHandler object (the class explained below) is created with these
parameters.

e Invoking the start() method: The start() method is invoked on this newly created
Thread object.

try {

server = new ServerSocket(K
server.setReuseAddress(true);
System.out.println("SERVER STARTED ON PORT " + server.getlLocalPort() + "

+ "\nReplicas: " + firstServerAddress + " " + secondServerAddress);

while (true) {

Socket client = server.accept();

ClientHandler clientSock

= new ClientHandler(client);

new Thread(clientSock).start();

}

catch (IOException e) {

Figure 19. Part of function main() in Server class

The ClientHandler class implements Runnable interface and thus it can be passed as a target
while creating a new Thread.

Inside the run() method of this class, the client message is read, and a handler function is
called according to the type of the message.

For instance, an add_cart message will trigger the insertion of a product in the cart of the
user, and a get cart message will retrieve all the products in the cart of the user.

As mentioned above, all ClientHandlers share the same database instance. In particular, one
of the variables of the Server class is an instance of the LevelDB class, containing the database
object and all the queries that can be performed on it.

So basically, what a ClientHandler does upon receiving a message from a client is to call the
corresponding query within the LevelDB class. The implementation of all queries on the
database will be shown in detail in the related Key-Value Database queries section.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 23

2. Implementation: cybuy: Main Packages and Classes

The ClientHandler, after handling the client request, also has the task of handling the replicas.
In fact, if a write operation has been performed on the database, the ClientHandler must
send messages to the replicas to update them.

To do this, similarly to what the Server does, the ClientHandler creates two new
ReplicaHandler threads, one per replica.

ReplicaHandler is another class implementing Runnable whose sole purpose is to
communicate with replicas.

Each ReplicaHandler sends an update message to one of the replicas and waits for an ACK. If
the ACK is received, the connection with the replica is closed. Otherwise, another attempt is
made, up to a maximum of three attempts.

For operations performed on the wishlist, the ReplicaHandler can simply forward to the
replica the message the ClientHandler received. In fact, a product is either in a user's wishlist
or not; this means that if the user were to notice any inconsistency, all he/she would have to
do is request again the insertion or removal of a particular product.

As for the cart instead, since there is the quantity attribute, if some insertion/removal
message were to be lost, the inconsistencies would no longer be repaired. Therefore, in this
case the ReplicaHandler always send a message containing the updated quantity for the
product.

2.4 cYBUY: MAIN PACKAGES AND CLASSES
The packages organization follows a hybrid approach: packages are first organized by layers,
and then, within every layer, they are divided by feature.

As can be seen from Figure 20, the root package contains five children: config, gui,
middleware, model, and persistence.

persistence

Figure 20. Package Structure

The config package contains the functions to load and read the configuration of the
application (IPs of the servers).

The model package contains every class needed to represent in an OOP style every entity of
the database: User, Order, Product, Review, Analytics, and DailyAnalytics.

These classes contain only getter and setter methods to load and read data and all of them,
except for the Review Object, are implemented following the Builder Pattern, since they have
a lot of members that can or cannot be set at the initialization.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 24

2. Implementation: cybuy: Main Packages and Classes

The other packages will be explained in detail below.

2.4.1 The gui package
The gui package contains the classes to handle the Graphical User Interface.

The implementation of the User Interface complies with the following logic. Every Interface
is an implementation of an abstract class called prototypes.Graphicinterface which contains
three methods:

e initialize(): a method that starts to load every graphical object and puts it into the
scene tree.

e getRoot(): a getter method to retrieve the root of the scene tree.
e setScene(): a setter method that place the current Interface into the window.

Interfaces exchange information about the state of the application using another class called
Session. This class contains the method to move from an Interface to another, and getter and
setter methods for the information that is going to be shared between interfaces, such as the
user logged. Every interface needs to be initialized giving this class as a parameter.

The implementation of the Graphicinterface follows two different approaches. Indeed, some
interfaces have been implemented using the FXML approach, so every graphical data is
contained by an XML-like file and the Interface simply loads the FXML file and its controller
and then sets the parameters of the Interface using its controller.

Other interfaces, instead, have been implemented using a hard-coded approach so the
initialize function builds every object and moves it into its position.

We have chosen to use two different approaches since we have found some interfaces easier
to implement with one method and other interfaces with the other method.

However, the project remains modular since every Interface is an implementation of an
abstract Interface.

2.4.2 The persistence package
The persistence package contains the driver for MongoDB and the client side of the LevelDB
functionalities.

The mongoDBDriver class contains as a member every query that has been implemented for
the MongoDB database. Analytics, as it was written before, are executed by a daemon on
server side.

LevelDBClient is a class that offers a simple way to communicate with the servers that handle
every operation performed on the LevelDB database.

The server and the client communicate using the Message class. This is a Serializable class
with three attributes:

e the type, containing the name of the operation that needs to be executed;
e the ID of the user who is making the request;
e anArraylist of Products.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 25

2. Implementation: Most Relevant Queries

These attributes are all the possible parameters needed by the LevelDB server to execute any
query.

2.43 The middleware package

The middleware package contains the classes that are needed to connect the Presentation
Layer (front end) with the drivers. So, it will connect the packages from gui to the ones inside
the persistence folder.

The EventHandler class is a Singleton that is used to communicate between the GUI and the
database drivers. It has a lot of methods that simply call the methods of the driver changing
its parameters. It therefore works like an Adapter pattern.

The classes Utilities and PasswordUtils contain utility functions used by the GUI and the
drivers, such as the control of images URLs and the hashing for the passwords.

2.5 MosT RELEVANT QUERIES

2.5.1 MongoDB queries

2.5.1.1 Insert a New Product
This function (Figure 21) is used to insert a new product into the database.

public String insertProduct(Product newProduct) {

Document productDocument = ProductToDocument(newProduct);

ClientSession clientSes mongoClient

TransactionBody<String> txnFunc = ()
BsonValue id = productsCollection.in ne(clientSession, productDocument
if (id == null) {

return "ERROR inserting the product™;

ng productld = id
newProduct ectId(productId);
long modifiedCount = usersCollection.upda
addToSet("products_on_sale”™, newProduct.
if (modifiedCount == 0) {

return "ERROR inserting the product in the seller’s document™;

return “0K";

1;

if (executeTransaction(clientSession, txnFunc)) {
return newProduct.getObjectId();

¥

return "ERROR™;

Figure 21. Add Product Query

As already mentioned, the Product class stores all the details about a product, such as
description, price, image URL and other useful information.

A Product instance is passed to the function, which then converts it into a MongoDB
Document and simply inserts this product into the Products collection.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 26

2. Implementation: Most Relevant Queries

This new product is inserted by a Seller, so it is important to insert it in the seller’s document
in the database as well.

In order to do so, we simply update the product_on_sale array in the seller’s document within
the Users collection.

2.5.1.2 Modify an existing Product

public boolean modifyProduct(String ProductId, Product newProduct){
Bson query = eq(”_id", new ObjectId(ProductId));
Bson update = Updates.
Updates.s
Updates.s
Updates.s
Updates.s

Updates.s

UpdateResult response = X = (query, update);

return response.ge

Figure 22. Modify Product Query

The function shown in Figure 22 is used to modify an existing product, by changing some of
the features the seller had previously added.

The Seller can change this information:

e description,

e price,

e image URL,

e features about the product (details).

The function searches for the product document in the Products collection using the product
ID and then changes all the fields that the seller specified in the application.

Note that this information was stored into the newProduct instance passed as argument in
the function.

2.5.1.3 Delete a Product

Figure 23 shows the function that deletes a seller’s product. This function takes as
parameters the Product instance of the product to be deleted and the User instance of the
seller that owns it.

In order to delete the product, we must delete its document from the Products collection,
and its ID from the products_on_sales array of the seller’s document in the Users collection.

Since the function needs to access multiple documents, all operations are included in a
MongoDB Transaction, in order to ensure atomicity.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 27

2. Implementation: Most Relevant Queries

public an deleteProduct(User user, Product product) {
if (product
tuser
ClientSession i S mongoClien

TransactionBody<String> txnFu

g deletedCount = produ 1lection. lientSession, eq("_id"

newObjectTd(product
if (deletedCount == 8) {

return "ERROR: There is no such product™;

ong modifiedCount = usersCollection.upda e(clientSession, eq("u.
pull(“products_on_sale”, produc ctId())
if (modifiedCount == 8) {
return "ERROR deleting the product from seller’s document™;
1
return "0K";
1

return executeTransaction(clientSession, txnFunc);

Figure 23. Delete Product Query

2.5.1.4 Get a list of Products based on specific parameters

ring productType, String platform, int skip, int limit, int sort, St

FindIterable<Document> productsDocuments;
Bson findByDescription = text(™\""+keyword+"\"");
Bson query;
productType !
if (platform
if (seller_username != null) {
", productType), eq("seller_username”, seller username), eq("platform”, platform),
findByDescription);
query = (and(ne("quantity available", 8),eq("product_type", productType), eq("platform”, platform),

findByDescription));

if (seller username !- null) {

query = (and(eq(“product_type”, productType), eq("seller_username”, seller_username), findByDescription));

query = (and(ne("quantity_available", @), eq("product_t productType), findByDescription));

Figure 24. Get Product List Query'”

This function (Figure 24) is used to retrieve a list of products from the database based on
certain parameters.

The application will use this function to display a list of products, filtered and/or sorted
according to the user's choices.

The function takes these arguments:

e keyword: only the products with a description matching the keyword will be
retrieved.

17 The full code is displayed on the GitHub Repository or at this link below:
https://pastebin.com/8ksxaCz9

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 28

2. Implementation: Most Relevant Queries

e productType: only the products belonging to this specific category will be retrieved.
e platform: the subcategory is specified too.

e skip: the first N items will be skipped and not retrieved.

e [imit: only N items will be retrieved (usually only 12 products are displayed in a page).
e sort: aninteger that corresponds to a specific sort based on price or review.

o seller_username: only the products of a target seller will be retrieved.

The keyword parameter is set if the user uses the search bar to look for a specific product.
The productType parameter is set only if a category was previously clicked (the same happen
also for the subcategory platform).

At last, the sort parameter is set if the user selects it from a menu in the application. Indeed,
the user can sort the list of products by Price from High to Low (integer 1), by Price from Low
to High (integer 2), by Stars from High to Low (integer 3) and by Stars from Low to High
(integer 4).

The skip and limit integers are automatically set by the application in order to retrieve the
right list of products to be displayed in a specific page.

2.5.1.5 Get the number of Products based on specific parameters

The function in Figure 25 is used to retrieve the number of products in the application that
match specific criteria. The arguments specified in the function are very similar to the
getProductsList query.

Indeed, it is possible to retrieve the number of products that belong to a specific category or
subcategory, the number of products for sale from a specific seller, or the number of
products whose description match the keyword.

", productType), findByDescription));

Figure 25. Get Number of Products Query'8

18 The full code can be found on the GitHub Repository of the project

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 29

2. Implementation: Most Relevant Queries

2.5.1.6 Getan instance of a Java Product from a product ID
Figure 26 shows a function that simply returns a Product instance for the product whose
Objectld is the one specified as an argument.

The function simply finds the product with that ID in the Products collection and then it
converts the MongoDB Document into the Java Product class.

public Product getProductFromId{String id) {

FindIterable<Document> productsDocumen productsCollection. find(eq(" new ObjectId(id)));

if (productsDocuments.f rn null;

return documentToProduct({productsDocuments.first());

Figure 26. Get Product from Id Query

2.5.1.7 Insert a new User
This function (Figure 27) inserts a new user into the Users collection of MongoDB.

It takes an instance of a Java User with all the information regarding the user to be inserted
and simply appends all the information into a MongoDB Document that will be added into
the collection.

public String insertUser(User newlUser) {
Document user = new Document("name”, newUser

.append("surname”, newlser.getSurnam

ge", newlUser.g
.append("role”, newlUser.getRo
Document password doc = new Document();
password_doc.appe sword™, newlser.g
password_doc.a “salt”, newlser.g
user.ap (word_info™, password_

BsonValue i usersCollection.inse

if (id ==

return id.

Figure 27. Insert User Query

2.5.1.8 Delete an existing User
The function displayed in Figure 28 deletes an existing User from the application.

If the User to be deleted is a Standard User, the function simply deletes its document from
the Users collection because there is no need to delete any active or past orders.

Otherwise, if the User is a Seller or an Administrator, in addition to deleting the user’s
document from the Users collection, all of the user’s products for sale must be deleted, all

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 30

2. Implementation: Most Relevant Queries

active orders must be cancelled, and documents regarding the user withing the Analytics
collection must be deleted.

Once again, all these operations are included in a MongoDB Transaction to ensure atomicity.

deleteUser(User user) {

n success;
ClientSession clientSession = mongoClient.s

if(user.getRole().equals("User")){
success = usersCollection.deleteOne(eq(”_id", new ObjectId(user.getObjectld()
Arraylist<String> seller_products = user.
ArraylList<Order> seller_orders = usel
TransactionBody<String> txnFunc = () ->
for (String seller_product : seller_product

Product product = Product.Produ tId(seller_product)

an deleted_product = deleteProduct(user, produc
(1deleted_product) {

return "Error deleting the product”;

for (Order seller_order : seller_orders) {
deleted_order = deleteOrder(seller_order,
if(1deleted_order){

return "Error deleting the order”;

ean deleted_analytics = analyticsCollection.deleteMany(eq("seller_username”,

f(!deleted_analytics){

n "Error deleting the analytics of the user”;
n deleted_user = usersCollection.deleteOne(eq(”_id", new ObjectId(user.getObjectId(

deleted_user){

return "Error deleting the user”;

success = executeTransaction(clientSession, txnFunc);

return success;

Figure 28. Delete User Query

2.5.1.9 Find a User

Figure 29 displays the function that finds the user with a specific username or with a specific
username and password pair.

If we want to retrieve a document with only the username, the password field must be null,
otherwise both the arguments of the function must be specified.

The password provided as an argument to the function is the one inserted by the user during
the login phase, so it is not encrypted.

In order to verify if this password was the one that he inserted during the registration phase,
we must encrypt it using the same encryption key of the registration phase (that was
previously stored in the user’s document) and check if there is a match between the current
encrypted password and the one stored previously in the document.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 31

2. Implementation: Most Relevant Queries

public User findUser(String ; password) {

D ment userDocumen

if (username null) {

return nul

f (password null) {

userDocument = usersCollection.find(eq("username”, username)).fi

if(userDocument == null) return null;

eturn documentToUser(userDocument);

userDocument = usersCollection.find(eq("username”, username)).fi

if(userDocument == nul

iment password_doc = (Document) userDocument sword_info™

salt = password doc.

ring encoded_password = password_doc
boolean passwordMatch = PasswordUtils (password, encoded_password, salt);
passwordMatch) retu null;

documentToUser (userDocument)

Figure 29. Find User Query

ObjectId userld = ObjectId(user.g
ClientSession clientSessi mongoClient.
TransactionBody<String> twnFunc

ment userfoc = -sCollection.find{clientSes

(include(

A0R: User

R: User cannot place the

1lection. oductId”

ws . $.5tars”,

ObjectId{productId)
ductsDocuments ~oductsCollection
Document p
if (productDo
int totalReviews
e averageReview
int newTotal = totalRev

B newdverage = newTotal;

long modifiedCount = productsCollection

sion, query, set{"total
if (modifiedCount]

return "ERROR wpdating total review:
an modified = productsCollection. clientSession, query, set
return

return

Figure 30. Insert Review Query

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 32

2. Implementation: Most Relevant Queries

2.5.1.10 Insert a Review
This function (Figure 30) is used to insert a review from a specific user for a product that he
previously purchased.

When a standard user has bought a product that has been successfully delivered to him/her,
the user can place a 1-to-5-star review for that product.

The function checks that the user has already bought the product; in this case in the reviews
array of his/her document there is already a document for the said product.

If the number of stars is set to -1 the user can place a review and his mark will replace it,
otherwise if the integer is not -1 it means that the user has already placed a review to that
product before.

All the operations are once again included in a MongoDB Transaction to ensure their
atomicity.

2.5.1.11 Insert an Order
slean insertOrder(Order order) {
Pair<Bson, Bson> insertUser, insertSeller;

order. Dbj (ObjectId.get
insertUser = insertOrderUser(order);

insertSeller = insertOrderSeller(order);

ClientSession clientSession = mongoClient.st
TransactionBody<String> txnFunc = () -> {

UpdateResult response;
response = usersCollection lientSession, insertUser.ge insertUser.get)
if (response.ge

clientSession

return "ERROR there is no such client™;
h
response = usersCollection lientSession, insertSeller.ge (), insertSeller
if (response.

clientSession

return "ERROR there is no such seller”;

(Order. r product : order.

Bson query = eq("_id" etProduct update, increment;

Document productDocument = productsCollection.find{clientSession, query)

increment = cument()

nd("quantity sold", product

Figure 31. Insert Order Query*®

This function (Figure 31) inserts an order into the database; at the moment of the insertion,
itis an active order.

1% The full function can be found in the GitHub Repository of the project

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 33

2. Implementation: Most Relevant Queries

More specifically, the function will insert the order into the document of the user who placed
it and also into the seller’s document within the Users collection.

All the operations are included in a MongoDB Transaction.

It is important to notice that when users checkout their cart, the application will take care of
splitting the entire order into smaller orders, each regarding a single seller.

2.5.1.12 Delete an Order
Figure 32 displays the function that deletes an active order from both the document of the
user who placed it and the document of the seller.

This function takes the Java Order instance and a boolean called restoreAvailability that, if
set as true, will restore the availability of that product as if the product had never been
purchased before.

lean deleteOrder(Order order, boolean restorefAvailability) {

ObjectId orderld;

string user_username = order.getlUse
sString seller username = order.ge
orderId = new ObjectId(order.g

ClientSession clientSession = mongoClient.st

TransactionBody<String> tx=n
Bson query, update;
update = Updates.pull(“orders"”, new Document(”_id", orderId));
query = or(

eq("username”, user_username),

eq("username”, seller_username)

fic
]

UpdateResult response = usersCollection.upda clientSession, query, update);
if (response.ge

clientSession.:

return "ERROR™;
I

return "OK";

ng transactionOK;

transactionOK = clientSession.withTrans

tch (EX

Figure 32. Delete Order Query?°

20 The full function can be found on the GitHub repository of the project

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 34

2. Implementation: Most Relevant Queries

2.5.1.13 Change the order state of an existing Order
This function (Figure 33) is used to change the order state of a specific order.

If the order is changed to “Arrived”, it must be moved to the Orders collection and it must be
removed from the documents of the seller and of the user that placed it.

The order state can be pending (it is the state of a new order), sent, delivered, arrived, or
cancelled.

olean changeOrderState(Order order, OrderState newState) {

changeOrderStateKernel (order, newState);

if (newState == OrderStat

deleteOrder(order, fals

insertOrderCollection(order);

g user_username = order.g
product : order
ocument respor
Bson query = and(
rname”, user_username)

ws.productId”, product.get

", emptyReview));

Figure 33. Change Order State Query

ic Analytics getSellerAnalytics{User user) {
Document analyticsDocument;
Analytics newAnalytics = Analyti
if(user == null || user.ge
rn newAnalytics;

seller username = use

analyticsDocument = analyticsCollection. (eq("seller_username”, seller_username))

if (analyticsDocument != null) {

newAnalytics = convertToAnalytics(analyticsDocument);
1
g

return newAnalytics;

Figure 34. Get Seller Analytics Query

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 35

2. Implementation: Most Relevant Queries

2.5.1.14 Get the analytics of a target Seller

The function shown in Figure 34 retrieves the analytics of the specific seller passed as an
argument.

It simply finds the analytics document into the Analytics collection of that specific user and
then it uses a conversion function to convert the document to an instance of the Java
Analytics class.

2.5.1.15 Geta list of Sellers based on their Ranking
Figure 35 shows the function that returns an ArrayList of users based on specific parameters.
The function takes a username String and an integer that corresponds to a particular sort.

If the username String is specified, only users whose username matches the string will be
inserted into the list. Otherwise, all the users will be retrieved.

If the sortinteger is set to 0, the users will be retrieved in descending order of average review
score. If itis set to 1, instead, the users will be retrieved in ascending order.

public ArraylList<User:> getSellerRanking(String username, int sorting) {
ArrayList<User> sellers = new Arraylis
FindIterable<Document> sellersDocs;

if(username != null) {

sellersDocs = analyticsCollection.find(regex("seller username”, username)});

sellersDocs = analyticsCollection.find(};
}
if(sorting)y {

sellersDocs = sellersDocs cending ("avg_reviews

= sellersDocs (descending("avg_review

1lersDocs)
seller username = doc.ge
le avg reviews = doc.g

int total_reviews = doc.g n ("total_review

(seller_username)

sellers.

rn sellers;

Figure 35. Get Seller List by Ranking Query

2.5.2 MongoDB aggregations

This section will show all the aggregations created for MongoDB. For each aggregation the
pipeline code will be displayed; to see how we exported each pipeline to Java language please
refer to the code of the daemon module.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 36

2. Implementation: Most Relevant Queries

2.5.2.1 Total Reviews and Average Review
In order to retrieve the total number of reviews and the average review for a seller an
aggregation is performed on the Products collection.

This aggregation takes advantage of the fact that redundancies regarding the total number
of reviews and the average review for a product have been included in the document of
that product.

The pipeline for this aggregation is shown in Figure 36, where the username "Lee4an" is
shown as an example. Obviously, in the Java application the seller username is a parameter
for the function that will perform the aggregation.

Special care had to be taken when calculating the average review. In fact, without any check,
the calculation of this analytics on a user who has not yet received any review would have
generated a division by 0.

[
E {
= Smatch: {

seller username: "Leedan”

=W N

r }

- oy U
T
—~

[e5}

Sset: {

9 sum of reviews: {
10 © Smultiply: [
11 "Stotal re
12 "$average r
13]

18 Sgroup: {

19 _id: "$seller_username",
20 H total seller reviews : {
21 Ssum : "Stotal reviews
. - b

23 ®& sum_of seller reviews :
24 $sum: "S$sum of reviews
- }

= S$set: {
30 © average seller review: {
= Scond: [
= {
33 o Seqg: [
34 "Stotal seller reviews",

Figure 36. Aggregation that retrieves the total number of reviews and the average review of a seller

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 37

2. Implementation: Most Relevant Queries

2.5.2.2 Stars distribution
In order to retrieve the distribution of stars (reviews) for every product on sale for a specific
seller an analytic is performed on the Orders Collection (see Figure 37).

This job could also be accomplished by adding more attributes to the Products collection, but
this could also increase the size of the collection and not permitting a rapid change of
paradigm in case of a possible update of the system (poor flexibility).

The analytic starts by searching in the Orders collection and filters every document that does
not involve the seller, then group every client that has bought something.

A lookup is needed in order to retrieve the reviews of the clients. The lookup is very fast
because it takes advantage of the username index (that will be presented later).

Then some cleaning of the result document is mandatory and then group up every review
that the seller has taken by the quantity of stars and count them to obtain the distribution.

[

$match: |
seller username:
1

$group: |
id: " .
orderedProduct: |
$push:
1
}

$lookup: |

$project: |
reviews : {$arrayElemaAt : [° "y O]k,
orderedProduct :

Sunwind: {
path: "

Sunwind: {
path: "

Sunwind: {
path: "

$project: |

Figure 37. The analytic to retrieve the distribution of the Reviews

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 38

2. Implementation: Most Relevant Queries

2.5.2.3 Average Delivery Time
In order to obtain the Average Delivery Time of a seller an aggregation is performed on the
Orders collection.

This is a simple aggregation that calculate the average of the difference between the
delivery_date and the order_date of a document and take the average.

The aggregation for the user “Leed4an” is shown as an example in Figure 38.

Smatch: {
seller username:"

Sproject: {
seller username: 1,
delivery duration:({
Ssubtract:[" ", " "]

Sgroup: {
id: ")
average_duration: {
Savg: "

Figure 38. The analytic to calculate the average delivery duration

2.5.2.4 Total Earnings
In order to retrieve the total earnings of a seller an aggregation is performed on the
Products collection.

This aggregation exploits the fact that redundancies regarding the number of units sold
have been included in product documents.

The pipeline for this aggregation is shown in Figure 39, where the username "Lee4an" is
shown as an example. Once again, in the Java application the seller username is a parameter
for the function that will perform the aggregation.

[

Smatch: {
seller username: "

}

$set: {
product earnings: {
$multiply: [

]

$group: {
ids * W
total earnings: {
$sum: "

}

1

Figure 39. Aggregation that retrieves the total earnings of a seller

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 39

2. Implementation: Most Relevant Queries

2.5.2.5 Total Sales
In order to retrieve the Total Sales of a seller an aggregation on the Products collection is
needed.

We simply do a match on the seller_username specifying the username of the seller that we
want to retrieve the total sales for, and then we group all the documents summing all the
quantity_sold fields.

This pipeline is shown in Figure 40, "Leedan" is shown as an example. In Java, the
seller_username is a parameter for the function that will perform this aggregation.

1 2L

2 B {

3 o Smatch: {

4 seller username: "Leedan"

}

6 by

A= {

= Sgroup: {

9 Aid: "&3@11@17[5@IL&MQ",
10 H© total sales: {
11 $sum: "Squantity sold"
12 }
13 }
14 }
15 1

Figure 40. Aggregation that retrieves the total number of sales for a seller

2.5.2.6 Daily Sales Analytics
As previously mentioned, whenever an order arrives at the customer, the document
containing the order overview is placed in the Orders collection.

The documents in this collection will also contain personal information regarding customers,
such as their age and gender.

It can be important for a seller to be able to view the daily performance of their sales, not

only in a general way but also by dividing customers into groups: males and females, young
and old?.

For this purpose, an aggregation, whose pipeline is shown in Figure 41, is performed on the
Orders collection.

In the Figure, the username "Lee4an" and the date 22/01/2021 are shown as examples,
but these are parameters in the function of the Java application that will perform the
aggregation.

The result obtained will be a triplet containing the number of total sales, the number of total
purchases made by male customers, and the number of total purchases made by old
customers, for that day.

21 1n our analysis, customers fall into the young category if their age is less than or equal to 35.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 40

2. Implementation: Most Relevant Queries

Note that the number of total purchases made by female customers and the number of total
purchases made by young customers can be easily calculated from the previous results; this
calculation will be done in the Java application function that will perform this aggregation.

1 [
2 % {
3 H Smatch: {
4 seller username: "Leelan”
S F }
6 r b,
7 E {
8 H Sproject: {
9 seller username: .
10 user: ’
11 H year : {
12 $year: "Sdelivery date"
= }.
14 H month: {
15 Smonth: "Sdelivery date"”
i - b
17 d day: {
18 SdayOfMonth: "Sdelivery date"
19 + } -
EUEN }
| b,
72 E {
23 H Smatch: {
24 day: ,
25 month: ,
26 year:
27 }
28 - b,
59 o {
= Sgroup: {
_id: ”559119:7:ae:tﬂ19",
= male sales: {
= Ssum: {
= Scond: [
H {
=
39 Y,

b,
old sales: {
Ssum: {
Scond: [
{

Figure 41. Aggregation that retrieves the daily analytics for a seller

2.5.3 Key-Value Database queries

2.5.3.1 Insert Product in Cart
The function shown in Figure 42 inserts the product passed as parameter in the cart of the
user whose ID is passed as parameter.

First of all, the function checks if the item is already present in the cart. If so, it increases the
attribute value and it returns the updated quantity. Otherwise, it inserts the product with a
guantity of 1 and calls insertProductinfos().

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 41

2. Implementation: Most Relevant Queries

This last function, whose implementation we will see later, deals with redundancies on
product description, price, and image.

public int addProductToCart(String user_id, Product product){

if(!dbopen) openDB();

String product_id = product.getobj

String key = "cart:user:” + user id + ":product:” + product id +":quantity”;

String quantity = getvalue(key);

if(quantity == null){

putvalue(key,"1");

if(insertProductInfos(product))
return 1;

return @;

} else {

int quantity int = Integer eInt(quantity);
quantity int +=

String new_quantity string = + quantity int;
putvalue(key,new_quantity string);

return quantity_int;

Figure 42. Insert Product in Cart

2.5.3.2 Remove Product from Cart
The function shown in Figure 43Figure 42 removes the product passed as parameter from
the cart of the user whose ID is passed as parameter.

First of all, the function checks if the item is already present in the cart. If so, it decreases the
attribute value and it returns the updated quantity.

If the updated quantity is 0, the entire record is removed from the database and function
decrementUsage() is called.

This function decrements the value of the usage attribute for the product passed as
parameter. As discussed earlier in the Data Model section, the usage attribute is used to
handle redundancies. In fact, it indicates how many carts and wishlists currently need the
information about a particular product and, when it reaches 0, it means that redundancies
can be eliminated.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 42

2. Implementation: Most Relevant Queries

public int removeProductCart(String user_id, Product product){

if(!dbopen) openDB();

String product_id = product

String key = "cart:use + user_id + ":product:" + product id +":quantity"”;

string quantity = getvalue(key);

if(quantity == null){

return -1;
Jelse{
int quantity int = Integ Int(quantity);

quantity int--;

if(quantity int > @)
putvalue(key, String u (quantity int));
else {

decrementUsage(product_id

deletevalue(key);
1
s

return quantity_int;

Figure 43. Remove Product from Cart

public ArrayList<Product> getProductsiIncart

Arraylist<Product> products = new ArrayList<>();

if(!dbopen) openDB();

try (DBIterator iterator = db.it
for (iterator iterator. iterator.

string key = asstring(iterator (iz

ith("cart:"

parts = key

if (parts[2].equals(user_id)) {

Product newProduct = getProductInfo(parts[4]);

newProduct nti e nt(getvalue(key)));

products.add(

Figure 44. Retrieve all Products in Cart

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 43

2. Implementation: Most Relevant Queries

2.5.3.3 Retrieve all Products in Cart
Figure 44 displays the function that retrieves all the products present in the shopping cart of
the user passed as parameter.

The function must scan the entire database looking for records regarding the shopping cart
of that particular user. When a record is found, the redundancies for the product are
retrieved and the said product is inserted into an ArraylList.

Finally, the ArrayList containing all the products is returned.

2.5.3.4 Add Product to Wishlist
The function shown in Figure 45 inserts the product passed as parameter in the wishlist of
the user whose ID is passed as parameter.

First of all, the function checks if the item is already present in the wishlist. If so, no action
should be performed. Otherwise, itinserts the product with the current date as attribute and
calls insertProductinfos().

public boolean addProductWishlist(String user_id, Product product){
DateTimeFormatter dtf = DateTimeFormatter.ofPattern("dd/MM/yyyy");
LocalDateTime now = LocalDateTime.now();

string current_date = dtf.format(now);

if(!dbopen) openDB();

String product_id = product.getObjectId();

String key = "wishlist:user:™ + user id + ":product:"” + product id +":date”;

string date = getvalue(key);

if(date == null){

putvalue(key, current date);

insertProductInfos(product);
} else {

return true;
1
J

return true;

Figure 45. Add Product to Wishlist

2.5.3.5 Remove Product from Wishlist
Figure 46 displays the function that removes the product passed as parameter from the
wishlist of the user whose ID is passed as parameter.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 44

2. Implementation: Most Relevant Queries

First of all, the function checks if the item is already present in the wishlist. If so, it deletes
the corresponding record and it calls decrementUsage() function.

public boolean removeProductWishlist(String user_id, Product product){

if(!dbopen) openDB();

String product id = product.ge ectId();

string key = "wishlist:user:™ + user_id + ":product:” + product_id +":date”;

String date = getvalue(key);

if(date != null) {

decrementUsage (product_id);

deletevalue(key);

return true;

Figure 46. Remove Product from Wishlist

public ArrayList<Product> getProductsInWishlist(String user id) throws IOException {

ArrayList<Product> products = new ArraylList<>();

if(!dbopen) openDB();

try (DBIterator iterator = db.iterator()) {
for (iterator.seekToFirst(); iterator.hasnext(); iterator.next()) {

string key = asString(iterator.p

if (key.startswith("wishlist:")) {
String[] parts = key.split
if (parts[2].equals(user id)) {
Product newProduct = getProductInfo(parts[4]);

products.add(newProduct);

return products;

Figure 47. Retrieve all Products in Wishlist

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 45

2. Implementation: Most Relevant Queries

2.5.3.6 Retrieve all Products in Wishlist
The function shown in Figure 47 that retrieves all the products present in the wishlist of the
user passed as parameter.

Similarly, to getProductsinCart(), the function must scan the entire database looking for
records regarding the wishlist of that particular user. When a record is found, the
redundancies for the product are retrieved and the said product is inserted into an ArraylList.

Finally, the ArrayList containing all the products is returned.

public lean insertProductInfos(Product product) {

if(!dbopen) openDB();

String id = product.g
String usageKey = "product:™ + id + ":usage”;

string usagevalue = getvalue(usageKey);

if(usagevalue == null) {

String descriptionKey = "product:” + id + ":description”;
string pricekey = "product:” + id + ":price”;

string imagekKey = "product:” + id + ":image”;

string description = product.getDescription();
String price = String.valueOf(product.getPrice

string image = product.getImage();

try (WriteBatch batch = db.createWriteBatch()) {

batch.put (bytes(descriptionkey), bytes(description));
batch.put(bytes(pricekey), bytes(price));
batch.put(bytes(imagekey), bytes(image));
batch.put (bytes(usagekey), bytes("1"));
db.write(batch);

} catch (IoException e) {
e.printStackTrace();
return false;

1

} else {

incrementUsage(id);

return true;

Figure 48. Insert Product Redundancies

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 46

2. Implementation: Most Relevant Queries

2.5.3.7 Insert Product Redundancies
This function, whose code is shown in Figure 48, takes care of inserting redundancies on
description, image and price of the product passed as parameter.

First, it checks if redundancies are already present for the said product by checking the
value of the usage attribute.

If the redundancies are not present, it proceeds with their insertion and sets the value of
the usage attribute to 0. Otherwise, it simply increments the usage value by one by calling
the function incrementUsage().

2.5.3.8 Handling Product Redundancies

As already mentioned, the management of redundancies on product information takes place
thanks to the usage attribute. The value of this attribute is rightly updated by calling the
incrementUsage() and decrementUsage() functions.

The first one, whose code is shown in Figure 49, has the simple task of increasing by one the
value of the usage for the product whose ID is passed as a parameter.

Figure 50 shows the code for the decrementUsage() function. This function must decrement
by one the value of the usage attribute, but it also has the task of checking when that value
reaches 0.

In fact, if the usage reaches 0, it means that that redundancy is no longer useful and can
therefore be eliminated by calling the cleanRedundancy() function.

The latter is responsible for deleting the three records, the one for the description, the one
for the image and the one for the price, for the product whose ID is passed as a parameter
(Figure 51).

private void incrementUsage(String product id){

String usage_key = "product:™ + product_id + “:usage”;
int usage nteger.parseInt(getValue(usage key));
usage += 1;

putValue(usage key,String.valueOf(usage));

Figure 49. Incrementing the usage value

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 47

2. Implementation: Most Relevant Queries

private void decrementUsage(String product id){

String usage key = “"product:" + product _id + ":usage";
string usages = getvalue(usage key);

int usage = 0;

if(usages != null) {
usage = Inte .parseInt(usages);

usage -= 1;

if(usage > 0){
putValue(usage key,String.valueOf(usage));
} else {

cleanRedundancy (product_id);

Figure 50. Decrementing the usage value

private void cleanRedundancy(String product id) {
String usageKey = "product:" + product_id + ":usage”;

String descriptionKey = "product:™ + product id + ":description”;

String priceKey = "product:" + product _id + ":price”;

String imageKey = "product:" + product _id + ":image”;

ArrayList<String> keys = new ArrayList<>();
keys.add(usageKey);
keys.add(descriptionKey);
keys.add(priceKey);

keys.add(imageKey);

multipleDelete(keys);

Figure 51. Cleaning Redundancies on a Product

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 48

3. Test: Statistical Analysis

3 TEST

3.1 STATISTICAL ANALYSIS

3.1.1 MongoDB Indexes
In order to enhance the execution of queries in MongoDB, cybuy makes use of indexes.

Without indexes, most queries in MongoDB should scan all documents within the collection
to find the ones (or the one) that meet the query criteria.

This can significantly slow down the application's performance, especially considering a large
and growing number of documents.

Indexes limit the number of documents to be inspected, but at the cost of memory usage
and having to keep them up to date.

Given these considerations, our choice to introduce indexes was accompanied by a statistical
analysis in terms of gain on performance.

The most important queries that we have chosen to improve in terms of performance are
the queries that users will use the most:

e Fora standard user the most important queries are to find a product by a substring,
filter the products by their type or logging in the application.

e Foraseller the mostimportant queries are to find every product that the user he/she
put up for sale, watch the analytics and logging in the application.

The number one priority in our application is the comfort for our users.

In order to speed up the log in, the most convenient thing to do is to create an index on the
username attribute. The speed up of the index can be seen in Figure 52.

A Text index on the description of a product and an index on its product_type have been
introduced in order to improve the performance of the filter query and research of the
products by their description.

It is important to notice that a Text index requires more memory than an ordinary index and
it is important to evaluate its size because the size of the indexes must be smaller than the
RAM of the machine where the database works on.

In our case the Text index occupies about 5.4 Mb (at least 2 orders of magnitude smaller than
the size of a RAM). As we can see from Figure 52 this index introduces an enormous gain in
term of performance.

To improve the search of a product that a seller put up on sale it is required to create an
index on the seller_username attribute on the Products collection.

This query is not important as the ones above, but we have noticed that this index also
improves the performance of a lot of analytics. This is not mandatory because the analytics
run only one time a day, but it is still appreciated.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 49

3. Test: Statistical Analysis

As we can see from Figure 53 the analytics take advantage of this index a lot.

PERFORMANCE OF SOME USER QUERIES

250 ms
200 ms
150 ms
100 ms

50 m§
30

13 16 e
° [
L0G In query SEarcH BY DESCrIPGIon FILCEr BY PrODUCE_CYPE

WICHOUC INDEXES WICH INDEXES

Figure 52. Performance improvement introduced by the indexes

W Without Index ~ ® With Index on seller_username

Ll
<
©
—_ o0 < <
(%) on o
=3
]
=
'_
=
o
'_
]
O
L
>
[
- o o i
REVIEW ANALYTICS TOTAL EARNINGS TOTAL SALES FIND PRODUCTS ON
ANALYTICS ANALYTICS SALE

QUERIES

Figure 53. Queries performance with and without the index on seller_username in the Products collection

3.1.2 Brief Consideration about the CAP Theorem

As should be clear by this point in the documentation, all of the choices that were made
during the design and implementation phases were aimed at fulfilling the functional and non-
functional requirements.

Specifically, from the outset it was stated that the application had to provide high availability
and fault tolerance.

As is well-know from the CAP theorem, distributed databases cannot have consistency,
availability, and partition protection at the same time. Thus, in order to meet the non-

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 50

3. Test: User Manual

functional requirements, we have always tried to prioritize availability and partition
protection over consistency.

This is particularly evident in the implementation of the servers that manage the Key-Value
Database and its replicas, but it can still be seen within the entire project.

Of course, consistency is still an important requirement, and we try to maintain it whenever
possible, especially when dealing with important data. However, in the event of a failure, we
would rather show the user inaccurate data than stop the application from working.

As an example, let us consider how the client behaves when communicating with the server
to perform an operation on the Key-Value Database.

When the application opens, one of the three possible servers is chosen randomly; from then
on, all requests will be sent to that server.

However, if while sending a request the client notices that the server has disconnected for
some reason, the client automatically selects another server and starts sending requests to
it.

Obviously, if the first server failed before completing the writes to the replicas, the client will
retrieve inconsistent data. In any case, the user will be happy to continue using the
application and will take care of fixing any inconsistencies himself/herself.

So, this is an example of how availability and partition tolerance were chosen at the expense
of consistency.

3.2 USER MANUAL

3.2.1 Navigation bar
The navigation bar (Figure 54) is included in every page. It is composed of an image of the
application logo, a search bar and some clickable labels like “Home”, “Login”, etc.

@ cybuy - (] X

d Cybuy O‘ A Home | Login
Figure 54. Navigation bar

The search bar is used to search a product in the application, by specifying a keyword in the
field. When the keyword is inserted, users can either click on the “Enter” button on their
keyboard or click on the magnifying glass button to trigger the search.

They will then be redirected to the Browse Product page and all the products matching the
keyword will be displayed.

Labels are used to navigate through the application. For instance, the “Home” button will
redirect the user to the Browse Product page, the “Login” to the Login page, the “Register”
to the registration page, and so on and so forth.

If the user has already logged in, the Login label will be replaced with his/her username
(Figure 55). Logged users can access their personal page with all their details by clicking the
username label.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 51

3. Test: User Manual

@ cybuy - [m} X

(5 Cybuy @, a Register | Tomawk ._'.
Figure 55. Navigation bar for a logged standard user

Also, if the user is a standard user, a new button will appear in the navigation bar: the cart
button. The cart button will not be displayed to sellers and administrators, because they
cannot place orders.

3.2.2 Registration
The registration page (Figure 56) can be accessed by every type of users; even already logged
users can register a new account.

@ cybuy a *

@ cybuy Q, & Home | Login

Register your account !

Signup

Figure 56. Registration form

Users must fill all the fields: Name, Surname, Password and Confirm Password, Username,
Country, and Age.

If a field is empty or the Password and Confirm Password are not the same, an error will be
triggered, and the user will not be registered.

The username must be unique, so if there is already a user with that username in the
database, the user will be forced to change it in the registration phase.

If all the fields are filled correctly, a message will be displayed, and the user will be logged in
automatically.

3.2.3 Login
The login page (Figure 57) can be accessed only if the user is not already logged in, otherwise
this page is inaccessible.

Users must fill both fields, specifying their Username and Password. If a user is already
registered in the database with that username and password, the login will be completed;
otherwise, an error message will be displayed.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 52

3. Test: User Manual

The logged user will be redirected to the main page of the application, the Browse Page.

9 oybuy

@ cybuy Q.

(@)

Sign in to Cybuy

- a x

R Register | Home

= J
l J

Sign in

Figure 57. Login page

3.2.4 Browsing Products

The Browse Page (Figure 58) is the main page of the application. When a user starts the
application, this page will be displayed at first.
@ cybuy Q,

1-12 of 45823 results

& Register | Login

Price: High to low

Shop by Category Price: Low to High

All Stars: High to Low
CDs and Vinils p Stars: Low to High
Data Storage

Digital Cameras

Headphones
Laptops

Pocket TV Mobile TV *MISSING STAND/

® #1 JAILBROKEN

Portable TV and FM VIZIO 24" Clas: FIRESTICK LITE w/ ALEXA SCREWS* Hi
Monitors Receiver Analog Outdoor Smart TV D-S¢ 9 VOICE & FULLY LOADED & 2H4C
Printers $23,99 $71,45 $50,90 $107,55

Smartphones
Smartwatches
Speakers
Tablets

Televisions

Videogames »

Element EASW7019RKU 70°
Ultra HD LED Roku Smart
TV - Black

$33,00 $79,00

E

New ListingRARE Disney

NEW SAMSUNG 50" LED TCL 325305 32 inch 720p
Princess TV Model 2160p Smart 4K Ultra HD TV LED Smart TV
DT-1900-P-A 19" CRT & SEALED BOX 55 Inch
$279,99 $275,00 $30,00

— Previous B 2|[3] . 3819 Next —

Figure 58. Browse Page

Only twelve products are displayed in one page; the user can navigate through different
pages selecting the buttons at the bottom of the page.

If no category is selected, the application will display the most purchased products from all
categories. Otherwise, the most bought products from the selected category will be shown.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 53

3. Test: User Manual

The categories (and subcategories) are selected from the sidebar on the left and only one
category can be selected at a time.

Below the navigation bar there is a bar. This bar will display the total number of products
belonging to the selected category or, if the category is not selected, the total number of
products for sale.

On the right we have a menu, by which the user can select a sort filter to display the products
in a specific order, sorting them by price or star reviews.

Note that, if the user has logged in as a seller or an administrator, this page will display only
the products that the user is currently selling.

3.2.5 Product Details
This page (Figure 59) can be accessed by clicking on a specific product in the main page. Also
not logged users can visit this page.

9 cybr - C X

©) Cybuy Tomawk | Register \Wl
= A

Element E4SW7019RKU 70"
Ultra HD LED Roku Smart TV -
Black

Product Information:

Tyoe —_— Brand Price:33.0$

- . - . 3 K He Kk ¢

Add to cart

Add to wishlist

Figure 59. Product Details Page (Users Only)

This page will display all the details regarding a specific product. That is, its description,
image, its features (such as the color, brand, etc.), price and star reviews.

In this page logged users can insert the product in their cart or in their wishlist clicking on the
corresponding button. Users can also place a review on the product if they have already
bought it by clicking on one of the stars.

If the user is an administrator or a seller, this page will have additional functionalities in order
to let him/her modify all the information about the product (Figure 60). In this case, a user
can, for example, change the description, the price, the image and add/remove features
about the product. Finally, users can apply all the changes made to the product by clicking
on the corresponding button.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 54

3. Test: User Manual

> a x
d cybuy Q & Jenna1021 | Register A
Product Information:
Type Brand m
Price: 9 $
Color B, m Features m
Quantity available: 4!
. P e Fe e Fe 2
(+)
Figure 60. Products Details Page (Seller or Admin only)
3.2.6 Account Page
8 cybuy - [m) X
@ cybuy & Tomawk | Register '_'. /ﬁl

Tomawk Go to orders history

Go to cart
Go to wishlist
Browse items

Tommaso

Giorgi

delete account

Figure 61. Account Page

The Account Page (Figure 61) is accessible only from a logged user. In this page users can see

all the details about their profile, including the Name, Surname, and Password they inserted
in the registration phase.

They can also delete their profile clicking on the delete account button.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 55

3. Test: User Manual

From this page, all users can go to their order history, standard users can go to their cart and
to their wishlist, sellers can access their Analytics Page or the Add Product page, and
administrators can access the Administration Panel.

3.2.7 Orders History

The Order Page can be accessed by any logged user from the Account Page. If the user is a
standard logged user, this page will show all the active orders that the user has placed (Figure
62).

by - o X

@ cybuy Q & Tomawk [Register - a

Q) History

Order 60095beSa701245210000030 Pri
state pending !

21 114805 CET 2021
Pritom 10 inch Android Tablet Octa-Core,

|
| || 3GBRAM. 5G WiFi, GPS, Bluetooth 5.0, 2.5D
o || Glass Screen, Dual Camera & Double ...

quantity: 1

w

Figure 62. Active Orders Page (Normal Logged Users)

The user can see all the details and also the state of the order. If the state is pending the user
can delete the order clicking on the trash bin icon. If the user clicks on the “View Past Orders”
button, active orders will be replaced by past orders (Figure 63). Information about the
product like the description, price and the image are not displayed in the past orders.

ybuy - o X

@ cybuy Q & Tomawk | Register _-. ﬂ

Q) History

Order 600424edbdb33e621962d499 Price $19,99
state arrived Date Sun Jan 03 12:20:00 CET 2021

@ 5fe9a2d2845df004bdacbaa8

quantity: 1

Order 6004280db4b83e6219621e54 Price $119998
state arrived Date Thu Jan 07 12:40:39 CET 2021

| View past orders

Figure 63. Past Orders Page (Normal Logged Users)

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 56

3. Test: User Manual

If the user is a seller, he/she has the possibility to change the state of the order and to
visualize all the details of the active (Figure 64) and past orders (Figure 65).

In any case, by clicking on the ordered product ID the user will be redirected to the Product
Details Page.

& cybuy - o X
@ cybuy Q & RassyuM | Register /|
Order 60095be5a701245a1000bb30 Price $129,99
state (ki [Date Thu Jan 21 11:48:05 CET 2021
@ 5fe9a411845df004b4acebds
quantity. 1
view past orders

Figure 64. Active Orders Page (Sellers/Admins)

0 cybuy - o x

@ Cybu.y Q a RassyuM | Register ﬁ.

Q History

Order 6004248ab4bB3e62f962cfa? Price §168,62

state arrived * set Date Fri Jan 01 12:08:38 CET 2021

@ S5fdb8edale189329746b5796

quantity: 1

Order 60042494b4b83e621062ctef Price $1098,88
state arved - set Date Fri Jan 01 12:19:08 CET 2021

View past orders

Figure 65. Past Orders Page (Sellers/Admins)

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 57

3. Test: User Manual

3.2.8 Standard User functionalities

3.281 Cart
The Cart Page can be accessed only from standard logged users, in fact unregistered users,
sellers and admins cannot place any order.

When there aren’t products in the cart, an image of an empty cart will be displayed, and a
new button will appear (Figure 66).

By clicking it, the user will be redirected to the main page in order to search for some
products to add to the cart. Also, the recap window on the right will be empty and the
“checkout” button will be unclickable.

@ cybuy Q & Register | Tomawk a“

Shopping Cart

Your cart is empty! emporary amount $000

CHECKOUT

Figure 66. Empty Cart Page

Otherwise, if the cart is not empty, it will display all the products including their own
description and their own price (Figure 67).

Also, the recap order will be filled with the sum of all the prices of every product. The user
has the possibility to remove an item from the cart clicking on the trash bin button or
increase/decrease his quantity in the cart clicking on the corresponding buttons.

a

©) cybuy Q, & Register | Tomawk aH

Shopping Cart

- Recap Order

$18,98

=

Total amount $316,98

dustry Leading Noise Canceling Overhead Headphones = | 1
lexa Voice Control, Blac "

ny WH-1000XM4 Wireless Indus - .
ith Mic for Phone-Cal lack Note, 1 pi

CHECKOUT
o

$298,00

Figure 67. Cart Page

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 58

3. Test: User Manual

When all the products are inserted properly in the cart, the user can finally place the order
clicking on the checkout button.

3.2.8.2 Wishlist

Like the cart, the wishlist is only reachable from a logged standard user. If its empty it will
display this image and a button that will redirect the user to the main page in order to search
for some products to add to his wishlist (Figure 68).

® o o %

@ cybuy Q, & Register | Tomawk 1

Tomawk's Wishlist

Your Wishlist is empty!

Figure 68. Empty Wishlist Page

Otherwise, if the wishlist it not empty (Figure 69), it will display all the products adding the
possibility for the user to move the product from the wishlist to the cart clicking on the “add
to cart” button.

Every product has also a trash bin button, if the user clicks on this button the item will be
removed from the wishlist. On the wishlist we have also the “remove all” button, that is very
useful if the user wants to remove all the products in the wishlist clicking just one button.

9 cyouy - o X

0 cybuy | Q R R ter | Tomaws =

Tomawk's Wishlist ‘ Remove all ‘

Onn 100012589 32 Inch 720P Led Roku Smart Tv
ADD TO CART

1]
$79,00

Samsung Un32j4001 32-Inch J4001-series 720P Hd Led Tv + Stand +Remote C ...

E ADD TO CART

1w

$92,30

Figure 69. Wishlist Page

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 59

3. Test: User Manual

3.2.9 Seller functionalities
These functionalities are exclusive to Sellers and Admins. Standard logged user cannot
perform any of these services provided by the application.

3.2.9.1 Add a new product

b

6 Cybuy Q & Register | Jenna1021 ﬂ

Insert your product !

§lrie] [om | |

Add product

Figure 70. Insert Product Page
In this page (Figure 70), an Admin or a Seller can add a new product to sell.

The description, image URL, price, category and the quantity available are mandatory fields.
The details instead are additional features that the user can also omit.

If a user wants to insert more than one detail feature about the product, he can simply click
on the “+” button and other fields will appear.

When all the fields are correctly filled, the user can finally click on the “Add Product” button
and the product will be inserted in the application.

3.2.9.2 Analytics
This page (Figure 71) is very useful for admins and sellers. In fact, it allows them to view
statistics about the products they are selling.

They can view their most sold product, the number of products globally sold and other useful
information.

They can easily manage reviews and they can view an history of their sales in the last month
also filtering the results by the age of the purchasers or their gender.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 60

3. Test: User Manual

@ cybuy o X

:@ cybuy Q & Jenna1021 | Register ﬂ-

Analytics Panel

Most sold product:
Products sold:

Total earnings:
Average delivery time:

Avera ge review:

History

Targer [t ~ |

Figure 71. Analytics Page
3.2.10 Administrator functionalities

3.2.10.1 Browsing Sellers
This page (Figure 72) can be accessed only from admin users by clicking on the corresponding
label in the user page.

@ cybuy - o x
cybuy ©, & Register | Leedan a®a
SEARCH
Top Sellers: Worst Sellers: |
syberx syberx
DELETE USER Country: France DELETE USER

Average Review: 0,00

Total Reviews: 0
wemakegreatpets wemakegreatpets
Country: France DELETE USER Country: France DELETE USER
Average Review: 0,00 Average Review: 0,00
Total Reviews: 0 Total Reviews: 0
Bicepticons Bicepticons
Country: France DELETE USER Country: France DELETE USER
Average Review: 0,00 Average Review: 0,00
Total Reviews: (Total Reviews: 0
lovepie130843 lovepie130843

Coumry.France DELETE USER Cournry:France DELETE USER

Figure 72. Browse Sellers Page

This page is used by the admins to manage the sellers, checking all their information and their
reviews. If a seller must be removed, the admin can easily search for him using the search
bar and clicking on the “delete user” button.

In this page we have two panels, in the panel on the left will be displayed the top sellers in
terms of reviews and in the other panel the worst sellers.

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 61

4. List of Figures

4 LIST OF FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.

UML diagram of the main Use Cases........cceevvviiiiiiiiiie e, 4
UML diagram of the Analysis Classesccceviiiiiiiiiiii e, 5
Section of the UML diagram of the Analysis Classes.......cccceereeeiiiiiiiiiiiiiiiiiiiiieieinnn 6
Example of document in the Users collection (Standard User)cccccvvveeeeeennnnns 7
Example of document in the Users collection (Seller)........ccouveeeeeiiiiiciiiieeeeeeeeeens 8
Example of document in the Products collectionccc, 9
Example of document in the Orders collection.............ccccc . 10
Example of document in the Analytics collectioncc 11
Section of the UML diagram of the Analysis Classes.......ccceeeeeeeiiiiiiiiieiiiiiiiieiiiinnns 12

RING STFUCTUIE ..t e e e e e e e et s e s e e e eeeaaaaaeees 14
Two-tier Client-Server Archit@Cturecccccvvviiiiiiiiii e 16
System architecture. ... 17
Directory structure of the project repoSitoryccccvvvveeeerverieeieieeiierieieeeeeeraeen. 19
Command crontab -1 executed on the primary server (IP: 172.16.3.138)....20
Function updateAnalytics() code — PART | ...ccviiiiiiiiiiiiiieeee et 20
Function updateAnalytics() code — PART Iluvviiiiiiiiiiiieiiiiereereeeeeseeeeeeesesesnnennen 21
Function updateAnalytics() code — PART Ilcvvviiiiieiiiiiiiiieiieeeeeeeieeeeeeeeeseennennen 21
Class SEIrVEr Variables.......ccuiiiiiiiiiiiiiiiee ettt e e e e e s s e 22
Part of function main() in SErver class.......coeeeviiiiiiieiiiiiiiieeeeeeeeeee e 23
Yol & T o U o (U PP PPPPPPPPIRE 24
Add Product QUEIY c.ccceeieeeeeeeeeee 26
Y oTe 13 AV s o Te [N ot @ LU= VAP PPPPPPPPPIRE 27
Delete ProdUCt QUETYcevveviieiiieiiieiieieeeeesesesssresssesesesseesererrrerrrrrrrrrre——... 28
Get Product LISt QUEIY.....ccooeeeeeeeeeeeeeeeeeee e 28
Get Number of Products QUErY.........cooeeeeiiiiiiiiceee, 29
Get Product from Id QUENY ...coooeeeeieieece 30
INSEIT USEI QUUETY ovvueiiiiiie e et e et et e et e e et s e e eab s e e e e s e eeanseeseeansaaennanaans 30

Figure 28. Delete USer QUENYcccceeeeeiieeeeeeeeeeeeeeeeeeeee e 31
Figure 29. FINd USEr QUENY.....ccii i, 32
Figure 30. INSErt REVIEW QUETYieiiiiieiiie ettt e et s e e e e e e e e e e e aaan e e eaanaeeeeaaanes 32
Figure 31. Insert Order QUEIY ...ccceeeeieeeee e 33
Figure 32. Delete Order QUENYcccceeeeeeeeeeeeee e, 34
Figure 33. Change Order State QUENYcccoiiiiiiiieeeeeeeeeeeeeeeeee e, 35
Figure 34. Get Seller Analytics QUEeIY.......ccooiiiiiiiiii 35
Figure 35. Get Seller List by Ranking QUErYccooiiiiiiiiiiiii 36
Figure 36. Aggregation that retrieves the total number of reviews and the average review of
=TT |1 PSP 37
Figure 37. The analytic to retrieve the distribution of the Reviewsl. 38
Figure 38. The analytic to calculate the average delivery duration...................................... 39
Figure 39. Aggregation that retrieves the total earningsof aseller.................................... 39
Figure 40. Aggregation that retrieves the total number of sales fora seller....................... 40

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 62

4. List of Figures

Figure 41. Aggregation that retrieves the daily analytics foraseller......................ol. 41
Figure 42. Insert Product in Cart.........coooiiiiiiiii 42
Figure 43. Remove Product from Cartccoooviiiiiiii 43
Figure 44. Retrieve all Products in Cart........ccoooeiiiiiii e, 43
Figure 45. Add Product to Wishlist ... 44
Figure 46. Remove Product from Wishlistcccciiiiii 45
Figure 47. Retrieve all Products in Wishlist..........cccceiiiii, 45
Figure 48. Insert Product Redundanciescccoviiiiiiiiiiii, 46
Figure 49. Incrementing the usage value..........ccccii 47
Figure 50. Decrementing the usage value..........cccciii 48
Figure 51. Cleaning Redundancies on a Productccccoeiiiiiiii 48
Figure 52. Performance improvement introduced by the indexescccc. 50
Figure 53. Queries performance with and without the index on seller_username in the

(S doTe [FTor {3 olo] | [=To1d o] o HEUUUUU PP PP PP UPPPPPPPTP 50
Figure 54. Navigation bar ... 51
Figure 55. Navigation bar for a logged standard user.............cccccci 52
Figure 56. Registration form.......cccoooiiiiii 52
FIBUIE 57. LOZIN PABE .uuiiiiiiiiiiiiee ettt ette s ettt s s e teae s e e eaae s e eeaa s s eeasaa s e eeananseeennansesennnns 53
FIBUIE 58. BrOWSE Pag@...ccuuuiiiiiiiiiiiiiiiieieiiie ettt s et s e et s e et s e e eaae s e eaaanseeesnaseeennnns 53
Figure 59. Product Details Page (USers ONly)......ccueeeeeeeiiiiiiiiieeiee et eeivveeee e 54
Figure 60. Products Details Page (Seller or Adminonly).........ccccoiii, 55
FIBUIE 61, ACCOUNT Page..ciuuiiiiiiiii it st e e et s e e eaas s e e aaa s s eeaaaaes 55
Figure 62. Active Orders Page (Normal Logged Users)cccccceviiiiiiiiii 56
Figure 63. Past Orders Page (Normal Logged USers)ccccccviiiiiiiiiiii 56
Figure 64. Active Orders Page (Sellers/Admins)ccccueeiiieiieeiiieeie e eecveeeeeereee e 57
Figure 65. Past Orders Page (Sellers/Admins)ccveieeiiieeeeiieeeeeeeireeeeeccreeeeeeeveeeeeeveeeeenns 57
FIgUIre 66. EMPLY Cart Page ..iivviiiiiiiii ettt e e eaae s e e eaas e e e eaa s e e eaaaaes 58
Ul A O Tl o - PP PPPR 58
Figure 68. Empty Wishlist Pageccooiiiiiiiiii 59
Figure 69. Wishlist Pageccoooiiiiiiiii 59
Figure 70. Insert Product Page ..o 60
Figure 71. Analytics Page......coooiiiiiiiii 61
Figure 72. Browse Sellers Page. ... 61

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 63

