

COMPUTER ENGINEERING
Large-Scale and Multi-Structured Databases

WORKGROUP PROJECT DOCUMENTATION

Design and development of “cybuy”:
an Application interacting with NoSQL Databases

Students
Federica Baldi

Tommaso Burlon
Tommaso Giorgi

Academic Year 2020/2021

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi I

CONTENTS

1 DESIGN ... 1

1.1 THE APPLICATION .. 1

1.2 REQUIREMENTS .. 1

1.2.1 Main actors ... 1

1.2.2 Functional requirements ... 2

1.2.3 Non-functional requirements .. 3

1.3 USE CASES ... 4

1.4 ANALYSIS CLASSES ... 4

1.5 DATA MODEL .. 6

1.5.1 Document DB collections .. 6

1.5.2 Key-Value DB namespaces and keys .. 12

1.6 DISTRIBUTED DATABASE DESIGN ... 13

1.6.1 Replicas... 13

1.6.2 Sharding .. 15

1.7 SYSTEM ARCHITECTURE .. 15

1.7.1 Client Side ... 15

1.7.2 Server Side .. 16

1.7.3 Frameworks .. 16

2 IMPLEMENTATION.. 18

2.1 DATASET ... 18

2.2 REPOSITORY STRUCTURE ... 18

2.3 MAIN MODULES .. 19

2.3.1 Python Module ... 19

2.3.2 Java Modules .. 19

2.4 CYBUY: MAIN PACKAGES AND CLASSES ... 24

2.4.1 The gui package .. 25

2.4.2 The persistence package ... 25

2.4.3 The middleware package .. 26

2.5 MOST RELEVANT QUERIES ... 26

2.5.1 MongoDB queries ... 26

2.5.2 MongoDB aggregations ... 36

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi II

2.5.3 Key-Value Database queries .. 41

3 TEST ... 49

3.1 STATISTICAL ANALYSIS ... 49

3.1.1 MongoDB Indexes ... 49

3.1.2 Brief Consideration about the CAP Theorem ... 50

3.2 USER MANUAL .. 51

3.2.1 Navigation bar .. 51

3.2.2 Registration .. 52

3.2.3 Login ... 52

3.2.4 Browsing Products .. 53

3.2.5 Product Details.. 54

3.2.6 Account Page .. 55

3.2.7 Orders History ... 56

3.2.8 Standard User functionalities .. 58

3.2.9 Seller functionalities .. 60

3.2.10 Administrator functionalities .. 61

4 LIST OF FIGURES ... 62

1. Design: The Application

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 1

1 DESIGN

1.1 THE APPLICATION
cybuy is an e-commerce application whose focus is on electronic products. It aims to make

the purchase process easier for customers and to allow sellers to manage their products and

their sales.

As previously stated, the application can be used both from customers and sellers.

Customers can use the application in order to browse the list of available products, see the

details of a specific product, and decide whether to add it to their cart or to their wishlist.

In addition, customers can place orders, keep track of their previous ones and they can decide

to leave a review on the products they have already bought.

On the other hand, sellers can manage their inventory – by adding new products and

modifying or deleting old ones – and they can visualize the list of orders and fulfill them.

cybuy also provides an analytics section, through which sellers can visualize sales reports and

reviewing performance, and take business decisions accordingly.

1.2 REQUIREMENTS

1.2.1 Main actors

The application is meant to be used by four different types of actors:

• Anonymous Users, who can browse products and their details, but are not allowed

to buy or do anything. They can log into the application with their username and

password, or they can sign up (either as Standard Users or Sellers).

• Standard Users, who are the customers of the e-commerce application. They can

search for products (applying filters on demand), place orders and manage their cart

and wishlist.

• Sellers, who can put products up for sale, manage their incoming orders and perform

sales analytics.

• Administrators, who are special Sellers holding high-level privileges. Indeed, they can

delete other Sellers when necessary (for instance, if they are scammers or if they

have only bad reviews).

1. Design: Requirements

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 2

1.2.2 Functional requirements

The functional requirements of the application are listed below.

• The application must provide a registration form in order to allow new users to sign

up, either as Standard Users or as Sellers1.

• The application must handle the login process, so that Anonymous Users can identify

themselves via a username and a password.

• The application must handle the logout process, so that Standard Users, Sellers, and

Administrators can disconnect from the system.

• The application must also give Standard Users, Sellers, and Administrators the

opportunity to delete their account if they no longer wish to use the offered services.

• Anonymous Users must be denied the chance to buy products or to sell them.

• Anonymous Users and Standard Users must be given the ability to browse the list of

for-sale products, optionally using parameters2.

• When selecting a product, Anonymous Users and Standard Users must be able to

view its details.

• While viewing the details of a product, Standard Users must be given the opportunity

to add the product either to their cart or to their wishlist.

• Standard Users must be offered the possibility to manage their cart, either by

changing the quantity of a product, removing a product, or emptying the whole cart.

• When the cart contains the products to be purchased in the right quantity, Standard

Users must be able to place an order.

• The application must provide Standard Users with an orders section, where they can

view their order history and the details of each order (such as its status and the list

of ordered products).

• If an order has not been shipped yet, Standard Users must be able to cancel it.

• Standard Users must be offered the possibility to manage their wishlist, both by

removing a product and moving it to the cart.

• Standard Users must be able to leave reviews3 of products they have purchased and

already received.

• Sellers must be given the opportunity to put products up for sale, specifying their

details and the available quantity.

1 Note that it is not possible to sign up as Administrators. In fact, application Administrators are
already pre-registered.
2 Parameters provided by the application are filter by category (and subcategory), filter by keyword,
sort by price and sort by reviews.
3 A one-to-five-star rating of the overall product quality and seller reliability.

1. Design: Requirements

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 3

• The application must show Sellers the list of products they have put on sale. When a

product is selected, the application must display its details.

• Sellers must be able to edit the details of products they have already listed for sale

and, whenever necessary, to delete a product.

• The application must provide Sellers with a section related to incoming orders, by

which they can view the list of ordered products, change the status of orders, and

fulfill them.

• The application must provide Sellers with an analytics section, where they can view

reports and sales statistics. In particular, Sellers can view:

o their best-selling Product;

o how many Products they have sold;

o their total earnings;

o the average delivery time;

o the average number of stars received and their distribution;

o a monthly chart showing daily sales, with some statistical information about

customers (such as their gender and age).

• Administrators must be offered all the functionalities offered to Sellers.

• Administrators must be given the authority to delete other Sellers' accounts if the

need arises.

1.2.3 Non-functional requirements

The following list outlines the non-functional requirements of the application.

• High Availability: The application must guarantee 24/7 service, so that users can use

it whenever they want to.

• Usability: The application must be user friendly, that is easy to use, with a simple and

intuitive user interface.

• Performance: The application must ensure short response time and low latency, so

that its use is enjoyable.

• Fault tolerance: The application must be able to continue operating properly in the

event of a failure.

• Scalability: The application must be able to handle a growing number of users and

products on sale.

• Security: Users passwords must be protected and stored encrypted.

1. Design: Use Cases

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 4

1.3 USE CASES
Figure 1 shows the UML use case diagram representing users’ interaction with the system.

Figure 1. UML diagram of the main Use Cases

The main use cases are explained in detail below.

• Browse Products: The application will show a list of products, along with their

description, image, and price. For Anonymous Users and Standard Users, this will be

the list of all available products, while for Sellers it will be the list of products they

have put up for sale.

• View Product Details: By selecting a product in the browsable list, users are given a

more in-depth view of it. Standard Users can add the product to their cart or to their

wishlist, or they can leave a review (if they have purchased and already received the

product). The Seller of the product may change its details or decide to delete it,

namely remove it from sale.

• Browse Orders (requires Login): The application will display the list of all placed

orders. For Standard Users, this will be the list of outgoing orders, while for Sellers it

will be the list of incoming ones. Both Standard Users and Sellers are given the

opportunity to delete an order if it has not been shipped yet. Only Sellers are given

the ability to update the status of the order, as it is being processed, shipped and,

finally, delivered.

1.4 ANALYSIS CLASSES
Figure 2 shows the main entities of the application and the relationships between them.

Users are characterized by their name and surname, email, a username and a password, their

gender, age, and their location.

1. Design: Analysis Classes

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 5

Users must be either Standard Users or Sellers; Sellers may also be Administrators.

Figure 2. UML diagram of the Analysis Classes

Each Seller may have none or many Products up for sale. Each Product must have its own

seller.

All Products have some common information associated with them – such as a short

description, an image, and their price – together with some specific fields.

Indeed, the details associated with a product can vary, in both nature and quantity,

depending on the type of the product (which is itself an attribute).

Standard Users are (uniquely) associated with their personal Cart and Wishlist; both may

contain zero or many Products.

In the Cart, each Product is associated with its quantity, whereas in the Wishlist, each Product

is associated with the date of its addition to the list.

Standard Users may have placed zero or many Orders and, similarly, Sellers may have zero or

more incoming Orders.

Each Order contains at least one Product, but it may contain many, and it must be associated

with the Standard User who placed it and the Seller who put the Product(s) up for sale.

Furthermore, Orders are characterized by some information such as the date they were

placed, their status (e.g., “sent”, “delivered", etc.) and their total amount.

1. Design: Data Model

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 6

Standard Users may have left none or many Reviews for the Products they purchased. Each

Product may not have any Reviews yet, or it may have many.

Reviews must be associated with the Standard User who left them and the Product they refer

to. Each Review also contains the number of stars assigned to the Product (from one to five).

1.5 DATA MODEL

1.5.1 Document DB collections

The Document Database will handle the entities of User (all its specializations), Product,

Order, and Review.

Figure 3 below shows the corresponding section of the UML diagram of the Analysis Classes

for greater clarity.

Figure 3. Section of the UML diagram of the Analysis Classes

Documents will be organized in four collections, namely Users, Products, Orders and

Analytics.

1.5.1.1 Users Collection

The Users collection will maintain information about all types of Users (Standard Users,

Sellers, and Administrators).

Fields containing general personal information such as name, surname, email, password,

username, gender, age, and location are present in all documents.

1. Design: Data Model

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 7

For security reasons, the password field is an embedded document containing the User’s

encrypted password and the encryption key required for authentication (salt).

Also, a role field is present to distinguish between the three types of Users and to offer them

the different functionalities of the application accordingly.

Figure 4. Example of document in the Users collection (Standard User)

The orders field is an array of nested documents regarding Orders. As can be seen in Figure 4

and Figure 5, the fields of the nested documents are slightly different depending on the type

of User.

For instance, Order documents for Standard Users will contain the username of the Seller,

while Order documents for Sellers will contain the username of the User.

In addition, redundancies regarding the ordered products are also included in the Users’

documents. In this way, some details about them will be easily visible along with the order

overview.

Since letting the number of members in embedded documents increase without limit can

lead to problems, once delivered, Orders will be moved to the Orders collection that will be

presented in detail later.

1. Design: Data Model

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 8

Figure 4 shows how only documents regarding Standard Users contain a reviews field, which

is an array of embedded documents. Each Review contains the ID of the Product it refers to

and the number of stars assigned to it.

Documents regarding Sellers, instead, contain a field for products on sale, that is an array of

IDs of Products they put up for sale (Figure 5).

Figure 5. Example of document in the Users collection (Seller)

Although document linking is somewhat unnatural for document databases, it seemed the

most appropriate choice given the nature of the queries the application must answer.

In fact, it is important for documents regarding Products to be stored in a separate collection,

in order to make the search and purchase processes more straightforward.

Also, since a lot of information must be maintained for each Product, it would have been

unfeasible to embed Products documents into the document of their Seller.

1. Design: Data Model

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 9

1.5.1.2 Products Collection

The Products collection will maintain information about all types of Products.

The fields description, image, product type, price, and quantity available are present in all

documents and must be specified by the Seller when inserting a new Product.

The details field contains a document whose size and content vary depending on the type of

Product. For example, since the Product whose document is shown in Figure 6 is a tablet,

information about the operating system, storage capacity, and screen size are listed.

The seller field contains the username of the Seller who put the Product up for sale. The

application will take care of keeping this reference consistent with the products on sale field

in the document of the Seller.

All other fields, namely quantity sold, total reviews and average review, will be automatically

added and kept updated by the application.

These fields are redundant, because their value could be derived each time from other data

present in the database. However, since they do not require large amounts of memory, it is

more convenient – performance wise – to store them than to compute them on-demand.

Figure 6. Example of document in the Products collection

1.5.1.3 Orders Collection

The Orders collection will maintain information about Orders that have already been

received. As anticipated earlier, once an Order is delivered, its data within Users’ documents

are deleted and moved to this collection.

This solution has several advantages. First, it eliminates the duplication of information

regarding the same Order in multiple documents.

1. Design: Data Model

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 10

Moreover, in some way it puts a limit to the size of Users’ documents. In fact, supposedly a

single Standard User will not place many Orders together in a short period of time and Sellers

will try their best to fulfill Orders as soon as possible.

The main drawback is that retrieving past Orders will be definitely slower than retrieving

current ones.

However, Standard Users will most likely be interested in viewing in-progress Orders and

their status updates, and less interested in viewing those regarding items they have already

received.

Similarly, Sellers will be more interested in viewing the details of Orders they have yet to ship,

rather than those they have already fulfilled.

As shown in Figure 7, each document in the Orders collection contains fields about price,

seller username, user, dates of delivery and order, and a field for ordered products.

This last field is an array of embedded documents, each of which contains the ID of the

Product ordered and in what quantity.

The user field is also an embedded document, containing the username of the User who

placed the Order and some of his/her personal information that will be useful for computing

analytics.

Figure 7. Example of document in the Orders collection

1.5.1.4 Analytics Collection

The Analytics collection will contain all documents related to the analytics of the Sellers.

Since performing the various aggregations needed is computationally intensive, analytics

cannot be computed on-demand because this would significantly slow down the application

performance.

1. Design: Data Model

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 11

Therefore, analytics for each Seller are calculated once a day on the server side and then

stored in the corresponding document.

Obviously, one of the disadvantages of this choice is that Sellers may view outdated

information. However, this is acceptable because reports only need to be a guide for business

decisions, and they do not have to be real-time.

Each document in the Analytics collection (Figure 8) contains the username of the Seller and

the month it refers to, along with the computed analytics.

Specifically, it contains: the total number of reviews, the average review and the distribution

of stars obtained, the average delivery time, the total earnings, the total sales, the best-

selling product, and daily information regarding sales.

When analytics are calculated for a Seller, if a document already exists for that Seller and for

that month, the document is updated, otherwise a new document is created.

In order to prevent the document from growing beyond the space allocated to it and having

to be moved to another location, at the time of creation the document already contains all

the required fields. In particular, the sales by day field already contains the embedded

documents for each day of the month, with all fields set to 0.

Figure 8. Example of document in the Analytics collection

1. Design: Data Model

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 12

1.5.2 Key-Value DB namespaces and keys

The Key-Value Database will be in charge of handling the entities of Standard User, Cart,

Wishlist and Product.

For greater clarity, the relative section of the UML diagram of the Analysis Classes is displayed

in Figure 9.

Figure 9. Section of the UML diagram of the Analysis Classes

Both Cart and Wishlist are involved on the one hand in a one-to-one relationship with

Standard User, and on the other hand in a many-to-many relationship with Product.

With the aim of avoiding potential key-naming conflicts, two namespaces have been defined,

one for the Cart and the other for the Wishlist.

This results in the addition of a prefix to the keys, namely cart and wishlist, respectively.

The final key-value configuration for the Cart is the following:

cart:user:$user_id4:product:$product_id5:quantity = $quantity_value

Whereas here is the final key-value configuration for the Wishlist:

wishlist:user:$user_id:product:$product_id:date = $date_value

The Key-Value Database will also act as a cache to make quickly accessible some information

regarding Products placed in a Cart or in a Wishlist.

Not all details regarding a Product need to be visible from the Cart and/or in the Wishlist, but

it would be beneficial to at least have the basic information.

For instance, in this Database redundancies will be introduced on the Product description,

image, and price.

The resulting key-value configuration is the following:

product:$product_id:$attribute = $attribute_value

The application will be responsible for keeping the redundant information consistent with

the Document Database.

4 Note that the user_id is the same one used in the Document Database to uniquely identify a User.
5 Note that the product_id is the same one used in the Document Database to uniquely identify a
Product.

1. Design: Distributed Database Design

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 13

Also, since the Key-Value Database already tends to be memory-intensive, an algorithm that

can free up some of the allocated cache memory when needed must be implemented.

To do this, a usage attribute is also stored for each Product; its value indicates how many

Carts and Wishlists currently contain that Product.

product:$product_id:usage = $usage_value

1.6 DISTRIBUTED DATABASE DESIGN
The entire database will be deployed on a cluster of servers. At the moment, the cluster will

be composed of three servers, but if in the future the load on the system increases, it will be

easily possible to add servers to the cluster and scale horizontally.

1.6.1 Replicas

Since high availability and fault tolerance are two of the non-functional requirements of the

application, it may be beneficial to save multiple copies of data in the cluster.

However, since performance is also among the non-functional requirements, it is important

to choose a number of replicas that is not so large.

A trade-off between the two requirements could be to set to three the number of copies of

each data item that the database will maintain.

1.6.1.1 Document Database Replicas

With respect to Document Database replicas, the servers will be configured in a master-slave

replication model, with one primary node and two secondary nodes.

All read operations will be directed to the primary node; however, in order to ensure high

availability, if the primary node is down, operations will read from secondary nodes6.

All write operations will be send to the primary node, but the number of copies of the data

item that must be written before the write can complete will depend on the collection (as

shown in Table 1).

Collection Name W R W = number of copies that must be
written before the write can complete

R = number of copies that the
application will access when reading

Users 3 1

Products 2 2

Orders 2 2

Analytics 3 1

Table 1. Read/Write Concerns for each Collection

The decision to distinguish read and write concerns by collection comes from the fact that

different collections contain different information, with different importance and update

frequency.

We want the login process to be as fast as possible and user's current orders to be quickly

retrievable as well, so read operations to the Users collection must be fast.

6In MongoDB, Read Preference is set to primaryPreferred.

https://docs.mongodb.com/manual/core/read-preference/#primaryPreferred

1. Design: Distributed Database Design

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 14

Writes, on the other hand, can be slower because these only occur during the registration

process and order creation, times when data consistency is important, and the user may be

willing to wait a little while.

Both reads and writes to the Products and Orders collections need to be reasonably fast, but

still consistent. In fact, we do not want a user to see outdated information about a product

or to buy a product that is actually no longer available.

Furthermore, writes, but especially reads towards the Orders collection will not happen as

often. This is because, as we have already mentioned, users will not be very interested in

viewing their past orders and, server-side, analytics will be calculated on the Orders collection

only once a day.

As for the Analytics collection, write operations are sent only once a day and from the server

side, so there is no need for them to be as fast as possible. Also, we want the computed

information not to be lost and to be quickly accessible for users to read.

1.6.1.2 Key-Value Database Replicas

As for the Key-Value Database replicas, the servers will be configured in a masterless

replication model and set up in a ring structure, as shown in Figure 10.

Figure 10. Ring structure

This means that there is not a single server that has the master copy of updated data, instead

servers in the cluster must collaborate to keep the replicas consistent with each other.

Each server can accept both read and write requests. Whenever there is a write operation to

one of the servers, the updated piece of data is also written to the two servers linked to the

original one, namely its neighbors.

A write request returns once the first copy is written, the other two will happen later.

Similarly, a read request reads a single version only.

Obviously, with this configuration the risk is that data will be lost if a node fails before the

second write or that the data read may not be the last version. However, speed of operations

and high availability must be prioritized over consistency.

Within the same session, all reads and all writes from a client will always be sent to the same

server, unless the server is down. In this way, an attempt is made to ensure session

consistency.

1. Design: System Architecture

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 15

If the server fails, the client will automatically try to contact another server. Once again,

availability is favored over consistency; users can accept their cart or wishlist to be

inconsistent once in a while, but could not bear the application to stop working.

1.6.2 Sharding

In a scenario where the number of users grows rapidly, the size of the database will also grow

accordingly, and it may become unfeasible to maintain an entire copy of the database on a

single server.

Moreover, as introduced earlier, if the load of the system increases, it would be convenient

to add servers to the cluster.

In this case, an appropriate solution would be sharding the data and choosing a partition

scheme to distribute the workload as evenly as possible.

Since there are neither document fields nor keys that by themselves naturally distribute

workloads evenly, a hash function would be appropriate to generate the shard key.

The hash function would be applied to the unique document IDs of all documents in the

Document Database and to keys in the Key-Value Database.

A possible solution would be then to divide the hash value by the number of servers and to

use the remainder to locate the node where the shard should be stored.

However, the application could catch on the international market and the database could

grow further, requiring the addition of more servers. Or it may unfortunately prove to be a

failure and some servers could be removed from the cluster.

In any case, the best solution for the application needs is to apply consistent hashing.

First, we would need to calculate the hash value of the IP addresses of all the servers in the

cluster. Then, we would calculate the hash value of each document ID and each key and

assign the relative object to its successor server in the address space.

The replicas for each shard would still be three and, taking advantage of the fact that the

servers are already logically placed in a circle, every object would also be copied to its

predecessor server and to the successor server of its successor server in the address space.

1.7 SYSTEM ARCHITECTURE
The architectural pattern used for the design of the overall system is the common two-tier

client-server one (Figure 11). Clients, for instance the users of the application, will request to

query the database to servers in the cluster.

1.7.1 Client Side

On the client side, the Presentation Layer and the Logic Layer run.

The Presentation Layer displays information related to the services offered by the

application, such as browsing products, purchasing, and shopping cart contents. It consists

of a Graphical User Interface that users can access directly.

1. Design: System Architecture

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 16

Its main task is to translate the actions performed by users into requests for the underlying

layer and, once the results are received, to translate these into something users can

understand.

Figure 11. Two-tier Client-Server Architecture

The Logic Layer acts as an interface between the Presentation Layer and the Data Layer,

located on the server side.

It is in charge of processing requests coming from the Presentation Layer, computing all the

right calculations, and passing them to the Data Layer (via a specific communication

protocol). Once the data is received from the database, the Logic Layer is responsible for

manipulating them and sending them back to the Presentation Layer.

1.7.2 Server Side

On the server side, a copy of the database (both the Document Database and the Key-Value

Database) is maintained, and the Data Layer runs.

The Data Layer function is to receive requests from the Logic Layer and to perform the

necessary operation into the database.

Demands from the Logic Layer could be either queries to retrieve data or requests to modify

the database (insertions, updates, deletions). In any case, once the demanded operation is

performed, information is passed back to the Logic Layer, and then eventually back to the

user (Presentation Layer).

1.7.3 Frameworks

As shown in Figure 12, the application code will be written completely in Java, with the

addition of JavaFX for the GUI.

1. Design: System Architecture

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 17

Concerning databases, MongoDB7 will be used for the Document Database, and LevelDB8 will

be used for the Key-Value Database.

Since LevelDB does not natively support the creation and management of replicas, a specific

service will be implemented in Java.

Apache Maven9 will be used as a tool for building and managing the whole application, while

for version control Git (in particular, GitHub10) will be used.

Figure 12. System architecture

7 https://www.mongodb.com/
8 https://github.com/google/leveldb
9 https://maven.apache.org/
10 https://github.com/

https://www.mongodb.com/
https://github.com/google/leveldb
https://maven.apache.org/
https://github.com/

2. Implementation: Dataset

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 18

2 IMPLEMENTATION11

2.1 DATASET
At the beginning of the implementation process, a real dataset that met the needs of the

application had to be retrieved.

Since cybuy is an e-commerce application whose focus is on electronic products, there were

mainly to find information about two entities: products and users.

The dataset for products is the result of scraping algorithms performed on different websites.

Finding information regarding the products was not difficult, but it was necessary to take

some measures to ensure that each generated document contained the fields previously

indicated in the Data Model section.

On the other hand, finding a dataset containing real users was not possible due to privacy

policies, so it was decided to combine different sources. In particular, a dataset containing

usernames, a dataset containing names and another one containing emails, password, and

other personal information12, were merged to form a single dataset.

The two datasets thus obtained were inserted into the Document Database and further

adjustments were then performed on them.

First, each user was assigned a role in a pseudo-random way (either Standard User, Seller or

Administrator). Then, each product was associated with its own seller.

Finally, other entities such as orders and reviews were generated once again by some

pseudo-random algorithms, in an attempt to mimic human behavior.

2.2 REPOSITORY STRUCTURE
The project repository, whose structure is displayed in Figure 13, is organized as follows:

• AddOn. This folder contains all the resources used in the cybuy module. In turn, it is

organized into subfolders, containing the CSS, fonts, images and FXML needed to

load the GUI.

• cybuy. This folder contains the code of the application to be run on the client side.

• daemon. This folder contains the code for a program that will run on the primary

MongoDB server to update the analytics documents.

• serverLevelDB. This folder contains the code that will run on the three servers to

manage queries and replicas on LevelDB.

• Web Scraping. This folder will contain some of the scripts written for web scraping.

• Database Dump. This folder will contain a dump of the Document Database.

11 All the source code for the application and a dump of the database can be found on GitHub at the
following link: https://github.com/Tomawk/cybuy-group17
12 Dataset containing reddit usernames, dataset containing most popular names, dataset containing
bank customers details

https://github.com/Tomawk/cybuy-group17
http://www.kaggle.com/colinmorris/reddit-usernames
https://data.world/chhs/4a8cb74f-c4fa-458a-8ab1-5f2c0b2e22e3
https://www.kaggle.com/mathchi/churn-for-bank-customers
https://www.kaggle.com/mathchi/churn-for-bank-customers

2. Implementation: Main Modules

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 19

Figure 13. Directory structure of the project repository

2.3 MAIN MODULES
For the purpose of developing the application, four modules were written, three of them in

Java and one in Python.

2.3.1 Python Module

The module written in Python was used in the first phase to populate the database. In fact,

it consisted of some scraping scripts able to retrieve useful data from various web sites.

In particular, multiple scripts were written in order to scrape information about electronic

products mainly from Amazon13, eBay14 and GAME15.

Some of the scripts are included among the source files on GitHub to serve as an example,

but we will not discuss their implementation in detail because it is beyond the focus of this

documentation.

2.3.2 Java Modules

Of the three modules written in Java, one will run client-side and the other two will run

server-side.

The client module is called cybuy and contains all the code needed to run the application.

Details about its implementation will be discussed in the next section.

The two server modules are daemon and serverLevelDB.

13 https://www.amazon.com/
14 https://www.ebay.com/
15 https://www.game.co.uk/

https://www.amazon.com/
https://www.ebay.com/
https://www.game.co.uk/

2. Implementation: Main Modules

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 20

2.3.2.1 daemon

As its name suggests, this module contains the code for a daemon that will run on the primary

MongoDB server every day at 00:01 (as shown in Figure 14).

Figure 14. Command crontab -l executed on the primary server (IP: 172.16.3.138)

The purpose of this program is to calculate the analytics of all sellers and update the

corresponding documents within the Analytics collection.

In the main() function, updateAnalytics() is called. As shown in Figure 15, this function, in

turn, calls all the functions to calculate analytics for every seller present in the Users

collection.

Figure 15. Function updateAnalytics() code – PART I

The aggregations computed on MongoDB to retrieve analytics for each seller will be

explained in detail in the concerning section MongoDB aggregations.

After performing the necessary calculations for each seller, the function checks whether or

not a document for the current month already exists regarding that seller in the Analytics

collection.

If the document already exists, it is updated with the newly calculated values (Figure 17).

Otherwise, a new empty document is created, already containing all the documents

concerning each day of the month, as anticipated in the Data Model section (Figure 16).

2. Implementation: Main Modules

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 21

Figure 16. Function updateAnalytics() code – PART II

Figure 17. Function updateAnalytics() code – PART III

2. Implementation: Main Modules

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 22

2.3.2.2 serverLevelDB

LevelDB does not natively provide support for creating and managing replicas, nor for multi-

process access to the same database file. For this, the serverLevelDB module was written.

As previously mentioned, as far as it concerns the Key-Value Database, the three servers

within the cluster have been organized in a masterless replication model. In order to do so,

servers will need to run the code contained in this module.

The code is the same for each of the three servers, except for a few minor changes. In fact,

the address and port variables for the first and second servers will be set accordingly on each

server (Figure 18).

Figure 18. Class Server variables

Each server is a multithreaded one; whenever a client sends a request, a thread is generated

to process it. In order to accept multiple requests from multiple clients at the same time,

multiple threads are generated.

By implementing a multithreaded server, the waiting time for the client decreases. Indeed,

while in a single-threaded server other users have to wait until the running process gets

completed, in multithreaded servers all users can get a response at a single time, so no user

has to wait for other processes to finish.

Moreover, although a LevelDB database can only be opened by one process at a time, inter-

thread concurrency is not an issue, as stated in the official documentation16.

“Within a single process, the same leveldb::DB object may be safely

shared by multiple concurrent threads. I.e., different threads may

write into or fetch iterators or call Get on the same database without

any external synchronization (the leveldb implementation will

automatically do the required synchronization).”

The Server class has the following tasks, as shown in Figure 19:

• Establishing the Connection: Server socket object is initialized and inside a while loop

a socket object continuously accepts an incoming connection.

• Obtaining the Streams: The InputStream object and OutputStream object is

extracted from the current requests’ socket object.

16 https://github.com/google/leveldb/blob/master/doc/index.md

https://github.com/google/leveldb/blob/master/doc/index.md

2. Implementation: Main Modules

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 23

• Creating a handler object: After obtaining the streams and port number (client Socket

object), a new ClientHandler object (the class explained below) is created with these

parameters.

• Invoking the start() method: The start() method is invoked on this newly created

Thread object.

Figure 19. Part of function main() in Server class

The ClientHandler class implements Runnable interface and thus it can be passed as a target

while creating a new Thread.

Inside the run() method of this class, the client message is read, and a handler function is

called according to the type of the message.

For instance, an add_cart message will trigger the insertion of a product in the cart of the

user, and a get_cart message will retrieve all the products in the cart of the user.

As mentioned above, all ClientHandlers share the same database instance. In particular, one

of the variables of the Server class is an instance of the LevelDB class, containing the database

object and all the queries that can be performed on it.

So basically, what a ClientHandler does upon receiving a message from a client is to call the

corresponding query within the LevelDB class. The implementation of all queries on the

database will be shown in detail in the related Key-Value Database queries section.

2. Implementation: cybuy: Main Packages and Classes

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 24

The ClientHandler, after handling the client request, also has the task of handling the replicas.

In fact, if a write operation has been performed on the database, the ClientHandler must

send messages to the replicas to update them.

To do this, similarly to what the Server does, the ClientHandler creates two new

ReplicaHandler threads, one per replica.

ReplicaHandler is another class implementing Runnable whose sole purpose is to

communicate with replicas.

Each ReplicaHandler sends an update message to one of the replicas and waits for an ACK. If

the ACK is received, the connection with the replica is closed. Otherwise, another attempt is

made, up to a maximum of three attempts.

For operations performed on the wishlist, the ReplicaHandler can simply forward to the

replica the message the ClientHandler received. In fact, a product is either in a user's wishlist

or not; this means that if the user were to notice any inconsistency, all he/she would have to

do is request again the insertion or removal of a particular product.

As for the cart instead, since there is the quantity attribute, if some insertion/removal

message were to be lost, the inconsistencies would no longer be repaired. Therefore, in this

case the ReplicaHandler always send a message containing the updated quantity for the

product.

2.4 CYBUY: MAIN PACKAGES AND CLASSES
The packages organization follows a hybrid approach: packages are first organized by layers,

and then, within every layer, they are divided by feature.

As can be seen from Figure 20, the root package contains five children: config, gui,

middleware, model, and persistence.

Figure 20. Package Structure

The config package contains the functions to load and read the configuration of the

application (IPs of the servers).

The model package contains every class needed to represent in an OOP style every entity of

the database: User, Order, Product, Review, Analytics, and DailyAnalytics.

These classes contain only getter and setter methods to load and read data and all of them,

except for the Review Object, are implemented following the Builder Pattern, since they have

a lot of members that can or cannot be set at the initialization.

2. Implementation: cybuy: Main Packages and Classes

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 25

The other packages will be explained in detail below.

2.4.1 The gui package

The gui package contains the classes to handle the Graphical User Interface.

The implementation of the User Interface complies with the following logic. Every Interface

is an implementation of an abstract class called prototypes.GraphicInterface which contains

three methods:

• initialize(): a method that starts to load every graphical object and puts it into the

scene tree.

• getRoot(): a getter method to retrieve the root of the scene tree.

• setScene(): a setter method that place the current Interface into the window.

Interfaces exchange information about the state of the application using another class called

Session. This class contains the method to move from an Interface to another, and getter and

setter methods for the information that is going to be shared between interfaces, such as the

user logged. Every interface needs to be initialized giving this class as a parameter.

The implementation of the GraphicInterface follows two different approaches. Indeed, some

interfaces have been implemented using the FXML approach, so every graphical data is

contained by an XML-like file and the Interface simply loads the FXML file and its controller

and then sets the parameters of the Interface using its controller.

Other interfaces, instead, have been implemented using a hard-coded approach so the

initialize function builds every object and moves it into its position.

We have chosen to use two different approaches since we have found some interfaces easier

to implement with one method and other interfaces with the other method.

However, the project remains modular since every Interface is an implementation of an

abstract Interface.

2.4.2 The persistence package

The persistence package contains the driver for MongoDB and the client side of the LevelDB

functionalities.

The mongoDBDriver class contains as a member every query that has been implemented for

the MongoDB database. Analytics, as it was written before, are executed by a daemon on

server side.

LevelDBClient is a class that offers a simple way to communicate with the servers that handle

every operation performed on the LevelDB database.

The server and the client communicate using the Message class. This is a Serializable class

with three attributes:

• the type, containing the name of the operation that needs to be executed;

• the ID of the user who is making the request;

• an ArrayList of Products.

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 26

These attributes are all the possible parameters needed by the LevelDB server to execute any

query.

2.4.3 The middleware package

The middleware package contains the classes that are needed to connect the Presentation

Layer (front end) with the drivers. So, it will connect the packages from gui to the ones inside

the persistence folder.

The EventHandler class is a Singleton that is used to communicate between the GUI and the

database drivers. It has a lot of methods that simply call the methods of the driver changing

its parameters. It therefore works like an Adapter pattern.

The classes Utilities and PasswordUtils contain utility functions used by the GUI and the

drivers, such as the control of images URLs and the hashing for the passwords.

2.5 MOST RELEVANT QUERIES

2.5.1 MongoDB queries

2.5.1.1 Insert a New Product

This function (Figure 21) is used to insert a new product into the database.

Figure 21. Add Product Query

As already mentioned, the Product class stores all the details about a product, such as

description, price, image URL and other useful information.

A Product instance is passed to the function, which then converts it into a MongoDB

Document and simply inserts this product into the Products collection.

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 27

This new product is inserted by a Seller, so it is important to insert it in the seller’s document

in the database as well.

In order to do so, we simply update the product_on_sale array in the seller’s document within

the Users collection.

2.5.1.2 Modify an existing Product

Figure 22. Modify Product Query

The function shown in Figure 22 is used to modify an existing product, by changing some of

the features the seller had previously added.

The Seller can change this information:

• description,

• price,

• image URL,

• features about the product (details).

The function searches for the product document in the Products collection using the product

ID and then changes all the fields that the seller specified in the application.

Note that this information was stored into the newProduct instance passed as argument in

the function.

2.5.1.3 Delete a Product

Figure 23 shows the function that deletes a seller’s product. This function takes as

parameters the Product instance of the product to be deleted and the User instance of the

seller that owns it.

In order to delete the product, we must delete its document from the Products collection,

and its ID from the products_on_sales array of the seller’s document in the Users collection.

Since the function needs to access multiple documents, all operations are included in a

MongoDB Transaction, in order to ensure atomicity.

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 28

Figure 23. Delete Product Query

2.5.1.4 Get a list of Products based on specific parameters

Figure 24. Get Product List Query17

This function (Figure 24) is used to retrieve a list of products from the database based on

certain parameters.

The application will use this function to display a list of products, filtered and/or sorted

according to the user's choices.

The function takes these arguments:

• keyword: only the products with a description matching the keyword will be

retrieved.

17 The full code is displayed on the GitHub Repository or at this link below:
https://pastebin.com/8ksxaCz9

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 29

• productType: only the products belonging to this specific category will be retrieved.

• platform: the subcategory is specified too.

• skip: the first N items will be skipped and not retrieved.

• limit: only N items will be retrieved (usually only 12 products are displayed in a page).

• sort: an integer that corresponds to a specific sort based on price or review.

• seller_username: only the products of a target seller will be retrieved.

The keyword parameter is set if the user uses the search bar to look for a specific product.

The productType parameter is set only if a category was previously clicked (the same happen

also for the subcategory platform).

At last, the sort parameter is set if the user selects it from a menu in the application. Indeed,

the user can sort the list of products by Price from High to Low (integer 1), by Price from Low

to High (integer 2), by Stars from High to Low (integer 3) and by Stars from Low to High

(integer 4).

The skip and limit integers are automatically set by the application in order to retrieve the

right list of products to be displayed in a specific page.

2.5.1.5 Get the number of Products based on specific parameters

The function in Figure 25 is used to retrieve the number of products in the application that

match specific criteria. The arguments specified in the function are very similar to the

getProductsList query.

Indeed, it is possible to retrieve the number of products that belong to a specific category or

subcategory, the number of products for sale from a specific seller, or the number of

products whose description match the keyword.

Figure 25. Get Number of Products Query18

18 The full code can be found on the GitHub Repository of the project

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 30

2.5.1.6 Get an instance of a Java Product from a product ID

Figure 26 shows a function that simply returns a Product instance for the product whose

ObjectId is the one specified as an argument.

The function simply finds the product with that ID in the Products collection and then it

converts the MongoDB Document into the Java Product class.

Figure 26. Get Product from Id Query

2.5.1.7 Insert a new User

This function (Figure 27) inserts a new user into the Users collection of MongoDB.

It takes an instance of a Java User with all the information regarding the user to be inserted

and simply appends all the information into a MongoDB Document that will be added into

the collection.

Figure 27. Insert User Query

2.5.1.8 Delete an existing User

The function displayed in Figure 28 deletes an existing User from the application.

If the User to be deleted is a Standard User, the function simply deletes its document from

the Users collection because there is no need to delete any active or past orders.

Otherwise, if the User is a Seller or an Administrator, in addition to deleting the user’s

document from the Users collection, all of the user’s products for sale must be deleted, all

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 31

active orders must be cancelled, and documents regarding the user withing the Analytics

collection must be deleted.

Once again, all these operations are included in a MongoDB Transaction to ensure atomicity.

Figure 28. Delete User Query

2.5.1.9 Find a User

Figure 29 displays the function that finds the user with a specific username or with a specific

username and password pair.

If we want to retrieve a document with only the username, the password field must be null,

otherwise both the arguments of the function must be specified.

The password provided as an argument to the function is the one inserted by the user during

the login phase, so it is not encrypted.

In order to verify if this password was the one that he inserted during the registration phase,

we must encrypt it using the same encryption key of the registration phase (that was

previously stored in the user’s document) and check if there is a match between the current

encrypted password and the one stored previously in the document.

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 32

Figure 29. Find User Query

Figure 30. Insert Review Query

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 33

2.5.1.10 Insert a Review

This function (Figure 30) is used to insert a review from a specific user for a product that he

previously purchased.

When a standard user has bought a product that has been successfully delivered to him/her,

the user can place a 1-to-5-star review for that product.

The function checks that the user has already bought the product; in this case in the reviews

array of his/her document there is already a document for the said product.

If the number of stars is set to -1 the user can place a review and his mark will replace it,

otherwise if the integer is not -1 it means that the user has already placed a review to that

product before.

All the operations are once again included in a MongoDB Transaction to ensure their

atomicity.

2.5.1.11 Insert an Order

Figure 31. Insert Order Query19

This function (Figure 31) inserts an order into the database; at the moment of the insertion,

it is an active order.

19 The full function can be found in the GitHub Repository of the project

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 34

More specifically, the function will insert the order into the document of the user who placed

it and also into the seller’s document within the Users collection.

All the operations are included in a MongoDB Transaction.

It is important to notice that when users checkout their cart, the application will take care of

splitting the entire order into smaller orders, each regarding a single seller.

2.5.1.12 Delete an Order

Figure 32 displays the function that deletes an active order from both the document of the

user who placed it and the document of the seller.

This function takes the Java Order instance and a boolean called restoreAvailability that, if

set as true, will restore the availability of that product as if the product had never been

purchased before.

Figure 32. Delete Order Query20

20 The full function can be found on the GitHub repository of the project

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 35

2.5.1.13 Change the order state of an existing Order

This function (Figure 33) is used to change the order state of a specific order.

If the order is changed to “Arrived”, it must be moved to the Orders collection and it must be

removed from the documents of the seller and of the user that placed it.

The order state can be pending (it is the state of a new order), sent, delivered, arrived, or

cancelled.

Figure 33. Change Order State Query

Figure 34. Get Seller Analytics Query

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 36

2.5.1.14 Get the analytics of a target Seller

The function shown in Figure 34 retrieves the analytics of the specific seller passed as an

argument.

It simply finds the analytics document into the Analytics collection of that specific user and

then it uses a conversion function to convert the document to an instance of the Java

Analytics class.

2.5.1.15 Get a list of Sellers based on their Ranking

Figure 35 shows the function that returns an ArrayList of users based on specific parameters.

The function takes a username String and an integer that corresponds to a particular sort.

If the username String is specified, only users whose username matches the string will be

inserted into the list. Otherwise, all the users will be retrieved.

If the sort integer is set to 0, the users will be retrieved in descending order of average review

score. If it is set to 1, instead, the users will be retrieved in ascending order.

Figure 35. Get Seller List by Ranking Query

2.5.2 MongoDB aggregations

This section will show all the aggregations created for MongoDB. For each aggregation the

pipeline code will be displayed; to see how we exported each pipeline to Java language please

refer to the code of the daemon module.

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 37

2.5.2.1 Total Reviews and Average Review

In order to retrieve the total number of reviews and the average review for a seller an

aggregation is performed on the Products collection.

This aggregation takes advantage of the fact that redundancies regarding the total number

of reviews and the average review for a product have been included in the document of

that product.

The pipeline for this aggregation is shown in Figure 36, where the username "Lee4an" is

shown as an example. Obviously, in the Java application the seller username is a parameter

for the function that will perform the aggregation.

Special care had to be taken when calculating the average review. In fact, without any check,

the calculation of this analytics on a user who has not yet received any review would have

generated a division by 0.

Figure 36. Aggregation that retrieves the total number of reviews and the average review of a seller

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 38

2.5.2.2 Stars distribution

In order to retrieve the distribution of stars (reviews) for every product on sale for a specific

seller an analytic is performed on the Orders Collection (see Figure 37).

This job could also be accomplished by adding more attributes to the Products collection, but

this could also increase the size of the collection and not permitting a rapid change of

paradigm in case of a possible update of the system (poor flexibility).

The analytic starts by searching in the Orders collection and filters every document that does

not involve the seller, then group every client that has bought something.

A lookup is needed in order to retrieve the reviews of the clients. The lookup is very fast

because it takes advantage of the username index (that will be presented later).

Then some cleaning of the result document is mandatory and then group up every review

that the seller has taken by the quantity of stars and count them to obtain the distribution.

Figure 37. The analytic to retrieve the distribution of the Reviews

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 39

2.5.2.3 Average Delivery Time

In order to obtain the Average Delivery Time of a seller an aggregation is performed on the

Orders collection.

This is a simple aggregation that calculate the average of the difference between the

delivery_date and the order_date of a document and take the average.

The aggregation for the user “Lee4an” is shown as an example in Figure 38.

Figure 38. The analytic to calculate the average delivery duration

2.5.2.4 Total Earnings

In order to retrieve the total earnings of a seller an aggregation is performed on the

Products collection.

This aggregation exploits the fact that redundancies regarding the number of units sold

have been included in product documents.

The pipeline for this aggregation is shown in Figure 39, where the username "Lee4an" is

shown as an example. Once again, in the Java application the seller username is a parameter

for the function that will perform the aggregation.

Figure 39. Aggregation that retrieves the total earnings of a seller

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 40

2.5.2.5 Total Sales

In order to retrieve the Total Sales of a seller an aggregation on the Products collection is

needed.

We simply do a match on the seller_username specifying the username of the seller that we

want to retrieve the total sales for, and then we group all the documents summing all the

quantity_sold fields.

This pipeline is shown in Figure 40, "Lee4an" is shown as an example. In Java, the

seller_username is a parameter for the function that will perform this aggregation.

Figure 40. Aggregation that retrieves the total number of sales for a seller

2.5.2.6 Daily Sales Analytics

As previously mentioned, whenever an order arrives at the customer, the document

containing the order overview is placed in the Orders collection.

The documents in this collection will also contain personal information regarding customers,

such as their age and gender.

It can be important for a seller to be able to view the daily performance of their sales, not

only in a general way but also by dividing customers into groups: males and females, young

and old21.

For this purpose, an aggregation, whose pipeline is shown in Figure 41, is performed on the

Orders collection.

In the Figure, the username "Lee4an" and the date 22/01/2021 are shown as examples,

but these are parameters in the function of the Java application that will perform the

aggregation.

The result obtained will be a triplet containing the number of total sales, the number of total

purchases made by male customers, and the number of total purchases made by old

customers, for that day.

21 In our analysis, customers fall into the young category if their age is less than or equal to 35.

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 41

Note that the number of total purchases made by female customers and the number of total

purchases made by young customers can be easily calculated from the previous results; this

calculation will be done in the Java application function that will perform this aggregation.

Figure 41. Aggregation that retrieves the daily analytics for a seller

2.5.3 Key-Value Database queries

2.5.3.1 Insert Product in Cart

The function shown in Figure 42 inserts the product passed as parameter in the cart of the

user whose ID is passed as parameter.

First of all, the function checks if the item is already present in the cart. If so, it increases the

attribute value and it returns the updated quantity. Otherwise, it inserts the product with a

quantity of 1 and calls insertProductInfos().

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 42

This last function, whose implementation we will see later, deals with redundancies on

product description, price, and image.

Figure 42. Insert Product in Cart

2.5.3.2 Remove Product from Cart

The function shown in Figure 43Figure 42 removes the product passed as parameter from

the cart of the user whose ID is passed as parameter.

First of all, the function checks if the item is already present in the cart. If so, it decreases the

attribute value and it returns the updated quantity.

If the updated quantity is 0, the entire record is removed from the database and function

decrementUsage() is called.

This function decrements the value of the usage attribute for the product passed as

parameter. As discussed earlier in the Data Model section, the usage attribute is used to

handle redundancies. In fact, it indicates how many carts and wishlists currently need the

information about a particular product and, when it reaches 0, it means that redundancies

can be eliminated.

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 43

Figure 43. Remove Product from Cart

Figure 44. Retrieve all Products in Cart

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 44

2.5.3.3 Retrieve all Products in Cart

Figure 44 displays the function that retrieves all the products present in the shopping cart of

the user passed as parameter.

The function must scan the entire database looking for records regarding the shopping cart

of that particular user. When a record is found, the redundancies for the product are

retrieved and the said product is inserted into an ArrayList.

Finally, the ArrayList containing all the products is returned.

2.5.3.4 Add Product to Wishlist

The function shown in Figure 45 inserts the product passed as parameter in the wishlist of

the user whose ID is passed as parameter.

First of all, the function checks if the item is already present in the wishlist. If so, no action

should be performed. Otherwise, it inserts the product with the current date as attribute and

calls insertProductInfos().

Figure 45. Add Product to Wishlist

2.5.3.5 Remove Product from Wishlist

Figure 46 displays the function that removes the product passed as parameter from the

wishlist of the user whose ID is passed as parameter.

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 45

First of all, the function checks if the item is already present in the wishlist. If so, it deletes

the corresponding record and it calls decrementUsage() function.

Figure 46. Remove Product from Wishlist

Figure 47. Retrieve all Products in Wishlist

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 46

2.5.3.6 Retrieve all Products in Wishlist

The function shown in Figure 47 that retrieves all the products present in the wishlist of the

user passed as parameter.

Similarly, to getProductsInCart(), the function must scan the entire database looking for

records regarding the wishlist of that particular user. When a record is found, the

redundancies for the product are retrieved and the said product is inserted into an ArrayList.

Finally, the ArrayList containing all the products is returned.

Figure 48. Insert Product Redundancies

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 47

2.5.3.7 Insert Product Redundancies

This function, whose code is shown in Figure 48, takes care of inserting redundancies on

description, image and price of the product passed as parameter.

First, it checks if redundancies are already present for the said product by checking the

value of the usage attribute.

If the redundancies are not present, it proceeds with their insertion and sets the value of

the usage attribute to 0. Otherwise, it simply increments the usage value by one by calling

the function incrementUsage().

2.5.3.8 Handling Product Redundancies

As already mentioned, the management of redundancies on product information takes place

thanks to the usage attribute. The value of this attribute is rightly updated by calling the

incrementUsage() and decrementUsage() functions.

The first one, whose code is shown in Figure 49, has the simple task of increasing by one the

value of the usage for the product whose ID is passed as a parameter.

Figure 50 shows the code for the decrementUsage() function. This function must decrement

by one the value of the usage attribute, but it also has the task of checking when that value

reaches 0.

In fact, if the usage reaches 0, it means that that redundancy is no longer useful and can

therefore be eliminated by calling the cleanRedundancy() function.

The latter is responsible for deleting the three records, the one for the description, the one

for the image and the one for the price, for the product whose ID is passed as a parameter

(Figure 51).

Figure 49. Incrementing the usage value

2. Implementation: Most Relevant Queries

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 48

Figure 50. Decrementing the usage value

Figure 51. Cleaning Redundancies on a Product

3. Test: Statistical Analysis

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 49

3 TEST

3.1 STATISTICAL ANALYSIS

3.1.1 MongoDB Indexes

In order to enhance the execution of queries in MongoDB, cybuy makes use of indexes.

Without indexes, most queries in MongoDB should scan all documents within the collection

to find the ones (or the one) that meet the query criteria.

This can significantly slow down the application's performance, especially considering a large

and growing number of documents.

Indexes limit the number of documents to be inspected, but at the cost of memory usage

and having to keep them up to date.

Given these considerations, our choice to introduce indexes was accompanied by a statistical

analysis in terms of gain on performance.

The most important queries that we have chosen to improve in terms of performance are

the queries that users will use the most:

• For a standard user the most important queries are to find a product by a substring,

filter the products by their type or logging in the application.

• For a seller the most important queries are to find every product that the user he/she

put up for sale, watch the analytics and logging in the application.

The number one priority in our application is the comfort for our users.

In order to speed up the log in, the most convenient thing to do is to create an index on the

username attribute. The speed up of the index can be seen in Figure 52.

A Text index on the description of a product and an index on its product_type have been

introduced in order to improve the performance of the filter query and research of the

products by their description.

It is important to notice that a Text index requires more memory than an ordinary index and

it is important to evaluate its size because the size of the indexes must be smaller than the

RAM of the machine where the database works on.

In our case the Text index occupies about 5.4 Mb (at least 2 orders of magnitude smaller than

the size of a RAM). As we can see from Figure 52 this index introduces an enormous gain in

term of performance.

To improve the search of a product that a seller put up on sale it is required to create an

index on the seller_username attribute on the Products collection.

This query is not important as the ones above, but we have noticed that this index also

improves the performance of a lot of analytics. This is not mandatory because the analytics

run only one time a day, but it is still appreciated.

3. Test: Statistical Analysis

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 50

As we can see from Figure 53 the analytics take advantage of this index a lot.

Figure 52. Performance improvement introduced by the indexes

Figure 53. Queries performance with and without the index on seller_username in the Products collection

3.1.2 Brief Consideration about the CAP Theorem

As should be clear by this point in the documentation, all of the choices that were made

during the design and implementation phases were aimed at fulfilling the functional and non-

functional requirements.

Specifically, from the outset it was stated that the application had to provide high availability

and fault tolerance.

As is well-know from the CAP theorem, distributed databases cannot have consistency,

availability, and partition protection at the same time. Thus, in order to meet the non-

3
6

4
1

3
4

3
4

1 0 0 1

R E V I E W A N A L Y T I C S T O T A L E A R N I N G S
A N A L Y T I C S

T O T A L S A L E S
A N A L Y T I C S

F I N D P R O D U C T S O N
S A L E

EX
EC

U
TI

O
N

 T
IM

E
(M

S)

QUERIES

Without Index With Index on seller_username

3. Test: User Manual

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 51

functional requirements, we have always tried to prioritize availability and partition

protection over consistency.

This is particularly evident in the implementation of the servers that manage the Key-Value

Database and its replicas, but it can still be seen within the entire project.

Of course, consistency is still an important requirement, and we try to maintain it whenever

possible, especially when dealing with important data. However, in the event of a failure, we

would rather show the user inaccurate data than stop the application from working.

As an example, let us consider how the client behaves when communicating with the server

to perform an operation on the Key-Value Database.

When the application opens, one of the three possible servers is chosen randomly; from then

on, all requests will be sent to that server.

However, if while sending a request the client notices that the server has disconnected for

some reason, the client automatically selects another server and starts sending requests to

it.

Obviously, if the first server failed before completing the writes to the replicas, the client will

retrieve inconsistent data. In any case, the user will be happy to continue using the

application and will take care of fixing any inconsistencies himself/herself.

So, this is an example of how availability and partition tolerance were chosen at the expense

of consistency.

3.2 USER MANUAL

3.2.1 Navigation bar

The navigation bar (Figure 54) is included in every page. It is composed of an image of the

application logo, a search bar and some clickable labels like “Home”, “Login”, etc.

Figure 54. Navigation bar

The search bar is used to search a product in the application, by specifying a keyword in the

field. When the keyword is inserted, users can either click on the “Enter” button on their

keyboard or click on the magnifying glass button to trigger the search.

They will then be redirected to the Browse Product page and all the products matching the

keyword will be displayed.

Labels are used to navigate through the application. For instance, the “Home” button will

redirect the user to the Browse Product page, the “Login” to the Login page, the “Register”

to the registration page, and so on and so forth.

If the user has already logged in, the Login label will be replaced with his/her username

(Figure 55). Logged users can access their personal page with all their details by clicking the

username label.

3. Test: User Manual

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 52

Figure 55. Navigation bar for a logged standard user

Also, if the user is a standard user, a new button will appear in the navigation bar: the cart

button. The cart button will not be displayed to sellers and administrators, because they

cannot place orders.

3.2.2 Registration

The registration page (Figure 56) can be accessed by every type of users; even already logged

users can register a new account.

Figure 56. Registration form

Users must fill all the fields: Name, Surname, Password and Confirm Password, Username,

Country, and Age.

If a field is empty or the Password and Confirm Password are not the same, an error will be

triggered, and the user will not be registered.

The username must be unique, so if there is already a user with that username in the

database, the user will be forced to change it in the registration phase.

If all the fields are filled correctly, a message will be displayed, and the user will be logged in

automatically.

3.2.3 Login

The login page (Figure 57) can be accessed only if the user is not already logged in, otherwise

this page is inaccessible.

Users must fill both fields, specifying their Username and Password. If a user is already

registered in the database with that username and password, the login will be completed;

otherwise, an error message will be displayed.

3. Test: User Manual

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 53

The logged user will be redirected to the main page of the application, the Browse Page.

Figure 57. Login page

3.2.4 Browsing Products

The Browse Page (Figure 58) is the main page of the application. When a user starts the

application, this page will be displayed at first.

Figure 58. Browse Page

Only twelve products are displayed in one page; the user can navigate through different

pages selecting the buttons at the bottom of the page.

If no category is selected, the application will display the most purchased products from all

categories. Otherwise, the most bought products from the selected category will be shown.

3. Test: User Manual

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 54

The categories (and subcategories) are selected from the sidebar on the left and only one

category can be selected at a time.

Below the navigation bar there is a bar. This bar will display the total number of products

belonging to the selected category or, if the category is not selected, the total number of

products for sale.

On the right we have a menu, by which the user can select a sort filter to display the products

in a specific order, sorting them by price or star reviews.

Note that, if the user has logged in as a seller or an administrator, this page will display only

the products that the user is currently selling.

3.2.5 Product Details

This page (Figure 59) can be accessed by clicking on a specific product in the main page. Also

not logged users can visit this page.

Figure 59. Product Details Page (Users Only)

This page will display all the details regarding a specific product. That is, its description,

image, its features (such as the color, brand, etc.), price and star reviews.

In this page logged users can insert the product in their cart or in their wishlist clicking on the

corresponding button. Users can also place a review on the product if they have already

bought it by clicking on one of the stars.

If the user is an administrator or a seller, this page will have additional functionalities in order

to let him/her modify all the information about the product (Figure 60). In this case, a user

can, for example, change the description, the price, the image and add/remove features

about the product. Finally, users can apply all the changes made to the product by clicking

on the corresponding button.

3. Test: User Manual

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 55

Figure 60. Products Details Page (Seller or Admin only)

3.2.6 Account Page

Figure 61. Account Page

The Account Page (Figure 61) is accessible only from a logged user. In this page users can see

all the details about their profile, including the Name, Surname, and Password they inserted

in the registration phase.

They can also delete their profile clicking on the delete account button.

3. Test: User Manual

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 56

From this page, all users can go to their order history, standard users can go to their cart and

to their wishlist, sellers can access their Analytics Page or the Add Product page, and

administrators can access the Administration Panel.

3.2.7 Orders History

The Order Page can be accessed by any logged user from the Account Page. If the user is a

standard logged user, this page will show all the active orders that the user has placed (Figure

62).

Figure 62. Active Orders Page (Normal Logged Users)

The user can see all the details and also the state of the order. If the state is pending the user

can delete the order clicking on the trash bin icon. If the user clicks on the “View Past Orders”

button, active orders will be replaced by past orders (Figure 63). Information about the

product like the description, price and the image are not displayed in the past orders.

Figure 63. Past Orders Page (Normal Logged Users)

3. Test: User Manual

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 57

If the user is a seller, he/she has the possibility to change the state of the order and to

visualize all the details of the active (Figure 64) and past orders (Figure 65).

In any case, by clicking on the ordered product ID the user will be redirected to the Product

Details Page.

Figure 64. Active Orders Page (Sellers/Admins)

Figure 65. Past Orders Page (Sellers/Admins)

3. Test: User Manual

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 58

3.2.8 Standard User functionalities

3.2.8.1 Cart

The Cart Page can be accessed only from standard logged users, in fact unregistered users,

sellers and admins cannot place any order.

When there aren’t products in the cart, an image of an empty cart will be displayed, and a

new button will appear (Figure 66).

By clicking it, the user will be redirected to the main page in order to search for some

products to add to the cart. Also, the recap window on the right will be empty and the

“checkout” button will be unclickable.

Figure 66. Empty Cart Page

Otherwise, if the cart is not empty, it will display all the products including their own

description and their own price (Figure 67).

Also, the recap order will be filled with the sum of all the prices of every product. The user

has the possibility to remove an item from the cart clicking on the trash bin button or

increase/decrease his quantity in the cart clicking on the corresponding buttons.

Figure 67. Cart Page

3. Test: User Manual

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 59

When all the products are inserted properly in the cart, the user can finally place the order

clicking on the checkout button.

3.2.8.2 Wishlist

Like the cart, the wishlist is only reachable from a logged standard user. If its empty it will

display this image and a button that will redirect the user to the main page in order to search

for some products to add to his wishlist (Figure 68).

Figure 68. Empty Wishlist Page

Otherwise, if the wishlist it not empty (Figure 69), it will display all the products adding the

possibility for the user to move the product from the wishlist to the cart clicking on the “add

to cart” button.

Every product has also a trash bin button, if the user clicks on this button the item will be

removed from the wishlist. On the wishlist we have also the “remove all” button, that is very

useful if the user wants to remove all the products in the wishlist clicking just one button.

Figure 69. Wishlist Page

3. Test: User Manual

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 60

3.2.9 Seller functionalities

These functionalities are exclusive to Sellers and Admins. Standard logged user cannot

perform any of these services provided by the application.

3.2.9.1 Add a new product

Figure 70. Insert Product Page

In this page (Figure 70), an Admin or a Seller can add a new product to sell.

The description, image URL, price, category and the quantity available are mandatory fields.

The details instead are additional features that the user can also omit.

If a user wants to insert more than one detail feature about the product, he can simply click

on the “+” button and other fields will appear.

When all the fields are correctly filled, the user can finally click on the “Add Product” button

and the product will be inserted in the application.

3.2.9.2 Analytics

This page (Figure 71) is very useful for admins and sellers. In fact, it allows them to view

statistics about the products they are selling.

They can view their most sold product, the number of products globally sold and other useful

information.

They can easily manage reviews and they can view an history of their sales in the last month

also filtering the results by the age of the purchasers or their gender.

3. Test: User Manual

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 61

Figure 71. Analytics Page

3.2.10 Administrator functionalities

3.2.10.1 Browsing Sellers

This page (Figure 72) can be accessed only from admin users by clicking on the corresponding

label in the user page.

Figure 72. Browse Sellers Page

This page is used by the admins to manage the sellers, checking all their information and their

reviews. If a seller must be removed, the admin can easily search for him using the search

bar and clicking on the “delete user” button.

In this page we have two panels, in the panel on the left will be displayed the top sellers in

terms of reviews and in the other panel the worst sellers.

4. List of Figures

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 62

4 LIST OF FIGURES

Figure 1. UML diagram of the main Use Cases .. 4
Figure 2. UML diagram of the Analysis Classes ... 5
Figure 3. Section of the UML diagram of the Analysis Classes ... 6
Figure 4. Example of document in the Users collection (Standard User) 7
Figure 5. Example of document in the Users collection (Seller) ... 8
Figure 6. Example of document in the Products collection ... 9
Figure 7. Example of document in the Orders collection ... 10
Figure 8. Example of document in the Analytics collection ... 11
Figure 9. Section of the UML diagram of the Analysis Classes ... 12
Figure 10. Ring structure .. 14
Figure 11. Two-tier Client-Server Architecture ... 16
Figure 12. System architecture ... 17
Figure 13. Directory structure of the project repository ... 19
Figure 14. Command crontab -l executed on the primary server (IP: 172.16.3.138) 20
Figure 15. Function updateAnalytics() code – PART I .. 20
Figure 16. Function updateAnalytics() code – PART II ... 21
Figure 17. Function updateAnalytics() code – PART III .. 21
Figure 18. Class Server variables... 22
Figure 19. Part of function main() in Server class .. 23
Figure 20. Package Structure .. 24
Figure 21. Add Product Query .. 26
Figure 22. Modify Product Query ... 27
Figure 23. Delete Product Query .. 28
Figure 24. Get Product List Query ... 28
Figure 25. Get Number of Products Query.. 29
Figure 26. Get Product from Id Query .. 30
Figure 27. Insert User Query .. 30
Figure 28. Delete User Query ... 31
Figure 29. Find User Query ... 32
Figure 30. Insert Review Query .. 32
Figure 31. Insert Order Query .. 33
Figure 32. Delete Order Query ... 34
Figure 33. Change Order State Query ... 35
Figure 34. Get Seller Analytics Query.. 35
Figure 35. Get Seller List by Ranking Query .. 36
Figure 36. Aggregation that retrieves the total number of reviews and the average review of

a seller ... 37
Figure 37. The analytic to retrieve the distribution of the Reviews 38
Figure 38. The analytic to calculate the average delivery duration 39
Figure 39. Aggregation that retrieves the total earnings of a seller 39
Figure 40. Aggregation that retrieves the total number of sales for a seller 40

4. List of Figures

cybuy | Federica Baldi, Tommaso Burlon, Tommaso Giorgi 63

Figure 41. Aggregation that retrieves the daily analytics for a seller 41
Figure 42. Insert Product in Cart ... 42
Figure 43. Remove Product from Cart .. 43
Figure 44. Retrieve all Products in Cart ... 43
Figure 45. Add Product to Wishlist ... 44
Figure 46. Remove Product from Wishlist .. 45
Figure 47. Retrieve all Products in Wishlist ... 45
Figure 48. Insert Product Redundancies ... 46
Figure 49. Incrementing the usage value .. 47
Figure 50. Decrementing the usage value ... 48
Figure 51. Cleaning Redundancies on a Product ... 48
Figure 52. Performance improvement introduced by the indexes 50
Figure 53. Queries performance with and without the index on seller_username in the

Products collection .. 50
Figure 54. Navigation bar ... 51
Figure 55. Navigation bar for a logged standard user.. 52
Figure 56. Registration form ... 52
Figure 57. Login page ... 53
Figure 58. Browse Page .. 53
Figure 59. Product Details Page (Users Only) .. 54
Figure 60. Products Details Page (Seller or Admin only) .. 55
Figure 61. Account Page ... 55
Figure 62. Active Orders Page (Normal Logged Users) .. 56
Figure 63. Past Orders Page (Normal Logged Users) ... 56
Figure 64. Active Orders Page (Sellers/Admins) .. 57
Figure 65. Past Orders Page (Sellers/Admins) ... 57
Figure 66. Empty Cart Page .. 58
Figure 67. Cart Page ... 58
Figure 68. Empty Wishlist Page .. 59
Figure 69. Wishlist Page ... 59
Figure 70. Insert Product Page ... 60
Figure 71. Analytics Page.. 61
Figure 72. Browse Sellers Page ... 61

